Como Citar
Luciani-Mejía, S., Velasco-Gómez, R., & Hudson, R. (2018). Ecoenvolventes : análise do uso de fachadas ventiladas em clima quente e úmido. Revista De Arquitectura (Bogotá), 20(2), 62–77. https://doi.org/10.14718/RevArq.2018.20.2.1726
##article.license##

A Revista de Arquitectura está catalogada como uma publicação de acesso aberto. Mais informações >>>

Os autores conservarão os direitos autorais e garantirão à Revista de Arquitectura o direito de primeira publicação da obra, o qual estará simultaneamente sujeito à licença Creative Commons (Atribuição-NãoComercial 4.0 Internacional CC BY-NC).

Os autores assinarão uma licença não exclusiva de distribuição da versão da obra publicada mediante a assinatura do documento RevArq FP03 Autorização para reprodução de artigo.

O autoarquivamento estará de acordo com os critérios expressos pelo SHERPA/RoMEO e pela classificação verde.

Para ver esses lineamentos, por favor, consultar >>>

Resumo

Com o objetivo de contribuir com a redução de impactos na construção de prédios foram desenhados vários sistemas de fachadas ventiladas e convencionais, que envolvem fachadas opacas, elementos vegetais e duto de ar. Esses sistemas foram avaliados com simulações ambientais e medições em protótipo nas diversas etapas da investigação, o que permitiu a comparação de resultados e a identificação de comportamento em termos de conforto térmico. Os resultados das simulações ante medições vislumbraram duas questões: as discrepâncias e as semelhanças entre os dados de entrada e saída nos dois tipos de processo mencionados, assim como a utilidade das fachadas ventiladas opacas em clima tropical úmido, como Girardot (Colômbia), o que sugeriu uma última etapa de avaliação de estratégias de desenho passivo na busca de conforto térmico e de sustentabilidade no projeto arquitetônico.

Palavras-chave:

Referências

Afonso, C., & Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71-79. DOI: https://doi.org/10.1016/S0378-7788(99)00038-9

Andarini, R. (2014). The Role of Building Thermal Simulation for Energy Efficient Building Design. Energy Procedia (47), 217-226. DOI: https://doi.org/10.1016/j.egypro.2014.01.217

Andelkovic, A. S., Mujan, I., & Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. DOI: https://doi.org/10.1016/j.enbuild.2016.02.045

Aparicio-Fernández, C., Vivancos, J.-L., Ferrer-Gisbert, P., & Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.041

Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings(34), 469-475. DOI: https://doi.org/10.1016/S0378-7788(01)00130-X

Barbosa, S., & Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review . Renewable and Sustainable Energy Reviews(40), 1019-1029. DOI: https://doi.org/10.1016/j.rser.2014.07.192

Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J., & Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder; A case study in Spain. Energy and Buildings(111), 326-336. DOI: http://dx.doi.org/10.1016/j.enbuild.2015.11.053

Bolaños, T., & Moscoso, A. (2011). Consideraciones y seleccio´n de especies vegetales para su implementacio´n en ecoenvolventes arquitecto´nicos: una herramienta metodolo´gica. Revista Nodo, 5(10), 5-20. Recuperado de: http://csifesvr.uan.edu.co/index.php/nodo/article/view/138

Ciampi, M., Leccese, F., & Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy(75), 491-502. DOI: https://doi.org/10.1016/j.solener.2003.09.010.

Design Builder. (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de: https://www.designbuilder.co.uk/

EnergyPlus. (19 de Octubre de 2017). EneryPlus. Recuperado de: https://energyplus.net/

Fantucci, S., Marinosci, C., Serra, V., & Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia(111), 619-628. DOI: https://doi.org/10.1016/j.egypro.2017.03.224

Gagliano, A., Patania, F., Nocera, F., & Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. DOI: https://doi.org/10.1016/j.enbuild.2013.12.060

Gaillard, L., Giroux-Julien, S., Ménézo, C., & Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy(103), 223-241. DOI: http://dx.doi.org/10.1016/j.solener.2014.02.018

Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D., & Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews(60), 1052-1065. DOI: https://doi.org/10.1016/j.rser.2016.01.130

Giancola, E., Sanjuan, C., Blanco, E., & Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings(54), 363-375. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.035

Gratia, E., & De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings(36), 41-60. DOI: https://doi.org/10.1016/j.enbuild.2004.05.004

Gratia, E., & De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy(81), 435-448. DOI: https://doi.org/10.1016/j.solener.2006.08.006

Haase, M., Silva, F. M., & Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings(41), 361-373. DOI: https://doi.org/10.1016/j.enbuild.2008.11.008

Høseggen, R., Wachenfeldt, B. J., & Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade Energy and Buildings(40), 821-827. DOI: https://doi.org/10.1016/j.enbuild.2007.05.015

Jentsch, M. F., Bahaj, A. S., & James, P. A. (2008). Climate change future proofing of buildings Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. DOI: https://doi.org/10.1016/j.enbuild.2008.06.005

Kim, D.-W., & Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings(43), 3635-3645. DOI: https://doi.org/10.1016/j.enbuild.2011.09.038

Marinosci, C., Semprini, G., & Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.044

Marinosci, C., Strachan, P., Semprini, G., & Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings(43), 853-863. DOI: https://doi.org/10.1016/j.enbuild.2010.12.005

Mateus, N. M., Pinto, A., & Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings(75), 511-522. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.02.043

Meteonorm. (22 de 02 de 2018). Meteonorm. Recuperado de: http://www.meteonorm.com/

Peci López, F., Jensen, R., Heiselberg, P., & Ruiz de Adana, M. (2012).Experimental analysis and model validation of an opaque ventilated facade. Building and Environment(56), 265-275. DOI: https://doi.org/10.1016/j.buildenv.2012.03.017

Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design, 61-66. Recuperado de: http://www.ebd.lth.se/fileadmin/energi_byggnadsdesign/images/Publikationer/Bok-EBD-R3-G5_alt_2_Harris.pdf

Pyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F., & Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal-energy performance simulations. Solar Energy(153), 224-237. DOI: http://dx.doi.org/10.1016/j.solener.2017.05.040

Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de: http://revistas.uan.edu.co/index.php/nodo/article/view/538

Stec, W. J., Paassen, A. H., & Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings(37), 419-427. DOI: https://doi.org/10.1016/j.enbuild.2004.08.008

Theodosiou, T., Tsikaloudaki, K., & Bikas, D. (2017). Analysis of the Thermal Bridging Effect on Ventilated Facades. Procedia Environmental Sciences(38), 397-404 DOI: https://doi.org/10.1016/j.proenv.2017.03.121

U.S. Department of Energy. (22 de 02 de 2018). energy.gov. Recuperado de: https://energy.gov/

Varini, C. (2011). ECOENVOLVENTES R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de: http://www.irbnet.de/daten/iconda/CIB_DC22949.pdf

Varini, C. (2013). ECOENVELOPES R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. doi: https://doi.org/10.3989/ic.11.147

Velasco, R., & Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates . eCAADe 2011 Respecting fragile places : proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (págs. 539-548). Ljubljana: edited by Tadeja Zupancic ... [et al.]. - Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture.

Velasco, R., Hudson, R., & Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: a pilot project for Colombia. 12th Conference on Advanced Building Skins (págs. 995-1003). Bern: Advanced Building Skins GmbH.

Vernay, D. G., Raphael, B., & Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics(28), 412-424. DOI: http://dx.doi.org/10.1016/j.aei.2014.06.003

##submission.citations.for##

Sistema OJS 3 - Metabiblioteca |