How to Cite
Luciani-Mejía, S., Velasco-Gómez, R., & Hudson, R. (2018). Eco-friendly coverings : analysis of the use of ventilated facades in hot, humid weather. Revista De Arquitectura, 20(2), 62–77. https://doi.org/10.14718/RevArq.2018.20.2.1726
License

Revista de Arquitectura is an open access journal. More information...

Authors retain copyright and grant to the Revista de Arquitectura the right of first publication, which will be simultaneously subject to the Creative Commons (CC) BY-NC license.

Authors will sign a non-exclusive distribution license for the published version of the article by completing (RevArq FP03 Permission to Reproduce).

Self-archiving will comply with SHERPA/RoMEO guidelines and the Green classification.

To see in detail these guidelines, please consult...

Abstract

Aiming to contribute to impact reduction in the construction of buildings, various systems of ventilated and conventional facades were designed, involving opaque facades, plant elements, and air chambers. Such systems were evaluated through environmental simulations and prototype measurements at various stages of the project, which allowed comparing results and identifying their behavior in terms of thermal comfort. The results of these simulations compared against measurements highlighted two issues: discrepancies and similarities between inputs and outputs in the above mentioned two process types; as well as the performance of opaque ventilated facades in humid tropical climate such as in Girardot, which suggested a last stage to evaluate passive design strategies in search for thermal comfort and sustainability in architectural projects.

Keywords:

References

Afonso, C., & Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71-79. DOI: https://doi.org/10.1016/S0378-7788(99)00038-9

Andarini, R. (2014). The Role of Building Thermal Simulation for Energy Efficient Building Design. Energy Procedia (47), 217-226. DOI: https://doi.org/10.1016/j.egypro.2014.01.217

Andelkovic, A. S., Mujan, I., & Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. DOI: https://doi.org/10.1016/j.enbuild.2016.02.045

Aparicio-Fernández, C., Vivancos, J.-L., Ferrer-Gisbert, P., & Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.041

Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings(34), 469-475. DOI: https://doi.org/10.1016/S0378-7788(01)00130-X

Barbosa, S., & Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review . Renewable and Sustainable Energy Reviews(40), 1019-1029. DOI: https://doi.org/10.1016/j.rser.2014.07.192

Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J., & Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder; A case study in Spain. Energy and Buildings(111), 326-336. DOI: http://dx.doi.org/10.1016/j.enbuild.2015.11.053

Bolaños, T., & Moscoso, A. (2011). Consideraciones y seleccio´n de especies vegetales para su implementacio´n en ecoenvolventes arquitecto´nicos: una herramienta metodolo´gica. Revista Nodo, 5(10), 5-20. Recuperado de: http://csifesvr.uan.edu.co/index.php/nodo/article/view/138

Ciampi, M., Leccese, F., & Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy(75), 491-502. DOI: https://doi.org/10.1016/j.solener.2003.09.010.

Design Builder. (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de: https://www.designbuilder.co.uk/

EnergyPlus. (19 de Octubre de 2017). EneryPlus. Recuperado de: https://energyplus.net/

Fantucci, S., Marinosci, C., Serra, V., & Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia(111), 619-628. DOI: https://doi.org/10.1016/j.egypro.2017.03.224

Gagliano, A., Patania, F., Nocera, F., & Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. DOI: https://doi.org/10.1016/j.enbuild.2013.12.060

Gaillard, L., Giroux-Julien, S., Ménézo, C., & Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy(103), 223-241. DOI: http://dx.doi.org/10.1016/j.solener.2014.02.018

Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D., & Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews(60), 1052-1065. DOI: https://doi.org/10.1016/j.rser.2016.01.130

Giancola, E., Sanjuan, C., Blanco, E., & Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings(54), 363-375. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.035

Gratia, E., & De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings(36), 41-60. DOI: https://doi.org/10.1016/j.enbuild.2004.05.004

Gratia, E., & De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy(81), 435-448. DOI: https://doi.org/10.1016/j.solener.2006.08.006

Haase, M., Silva, F. M., & Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings(41), 361-373. DOI: https://doi.org/10.1016/j.enbuild.2008.11.008

Høseggen, R., Wachenfeldt, B. J., & Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade Energy and Buildings(40), 821-827. DOI: https://doi.org/10.1016/j.enbuild.2007.05.015

Jentsch, M. F., Bahaj, A. S., & James, P. A. (2008). Climate change future proofing of buildings Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. DOI: https://doi.org/10.1016/j.enbuild.2008.06.005

Kim, D.-W., & Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings(43), 3635-3645. DOI: https://doi.org/10.1016/j.enbuild.2011.09.038

Marinosci, C., Semprini, G., & Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.044

Marinosci, C., Strachan, P., Semprini, G., & Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings(43), 853-863. DOI: https://doi.org/10.1016/j.enbuild.2010.12.005

Mateus, N. M., Pinto, A., & Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings(75), 511-522. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.02.043

Meteonorm. (22 de 02 de 2018). Meteonorm. Recuperado de: http://www.meteonorm.com/

Peci López, F., Jensen, R., Heiselberg, P., & Ruiz de Adana, M. (2012).Experimental analysis and model validation of an opaque ventilated facade. Building and Environment(56), 265-275. DOI: https://doi.org/10.1016/j.buildenv.2012.03.017

Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design, 61-66. Recuperado de: http://www.ebd.lth.se/fileadmin/energi_byggnadsdesign/images/Publikationer/Bok-EBD-R3-G5_alt_2_Harris.pdf

Pyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F., & Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal-energy performance simulations. Solar Energy(153), 224-237. DOI: http://dx.doi.org/10.1016/j.solener.2017.05.040

Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de: http://revistas.uan.edu.co/index.php/nodo/article/view/538

Stec, W. J., Paassen, A. H., & Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings(37), 419-427. DOI: https://doi.org/10.1016/j.enbuild.2004.08.008

Theodosiou, T., Tsikaloudaki, K., & Bikas, D. (2017). Analysis of the Thermal Bridging Effect on Ventilated Facades. Procedia Environmental Sciences(38), 397-404 DOI: https://doi.org/10.1016/j.proenv.2017.03.121

U.S. Department of Energy. (22 de 02 de 2018). energy.gov. Recuperado de: https://energy.gov/

Varini, C. (2011). ECOENVOLVENTES R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de: http://www.irbnet.de/daten/iconda/CIB_DC22949.pdf

Varini, C. (2013). ECOENVELOPES R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. doi: https://doi.org/10.3989/ic.11.147

Velasco, R., & Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates . eCAADe 2011 Respecting fragile places : proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (págs. 539-548). Ljubljana: edited by Tadeja Zupancic ... [et al.]. - Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture.

Velasco, R., Hudson, R., & Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: a pilot project for Colombia. 12th Conference on Advanced Building Skins (págs. 995-1003). Bern: Advanced Building Skins GmbH.

Vernay, D. G., Raphael, B., & Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics(28), 412-424. DOI: http://dx.doi.org/10.1016/j.aei.2014.06.003

Reference by

Sistema OJS 3 - Metabiblioteca |