La Revista de Arquitectura se cataloga como una publicación de acceso abierto. Más información >>>
Los autores conservarán los derechos de autor y garantizarán a la Revista de Arquitectura el derecho de primera publicación de la obra, el cual estará simultáneamente sujeto a la licencia Creative Commons (CC) BY-NC.
Los autores suscribirán una licencia no exclusiva de distribución de la versión de la obra publicada mediante la firma de (RevArq FP03 Autorización reproducción)
El Autoarchivo estará de acuerdo con los criterios expresados por SHERPA/RoMEO y la clasificación Verde.
Para ver en detalle estos lineamientos, por favor consultar >>>
Resumen
Con el objetivo de aportar a la reducción de impactos en la construcción de edificaciones fueron diseñados varios sistemas de fachadas ventiladas y convencionales, involucrando fachadas opacas, elementos vegetales y cámaras de aire. Tales sistemas fueron evaluados con simulaciones ambientales y mediciones en prototipo en las diversas etapas de la investigación, lo que permitió la comparación de resultados y la identificación de comportamiento en términos de confort térmico. Los resultados de las simulaciones frente a mediciones vislumbraron dos cuestiones: las discrepancias y similitudes entre los datos de entrada y salida en los dos tipos de proceso mencionados; así como la utilidad de las fachadas ventiladas opacas en clima tropical húmedo como Girardot, lo que sugirió una última etapa de evaluación de estrategias de diseño pasivo en la búsqueda del confort térmico y la solemnidad en el proyecto arquitectónico.
Palabras clave:
Citas
Afonso, C., & Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71-79. DOI: https://doi.org/10.1016/S0378-7788(99)00038-9
Andarini, R. (2014). The Role of Building Thermal Simulation for Energy Efficient Building Design. Energy Procedia (47), 217-226. DOI: https://doi.org/10.1016/j.egypro.2014.01.217
Andelkovic, A. S., Mujan, I., & Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. DOI: https://doi.org/10.1016/j.enbuild.2016.02.045
Aparicio-Fernández, C., Vivancos, J.-L., Ferrer-Gisbert, P., & Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.041
Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings(34), 469-475. DOI: https://doi.org/10.1016/S0378-7788(01)00130-X
Barbosa, S., & Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review . Renewable and Sustainable Energy Reviews(40), 1019-1029. DOI: https://doi.org/10.1016/j.rser.2014.07.192
Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J., & Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder; A case study in Spain. Energy and Buildings(111), 326-336. DOI: http://dx.doi.org/10.1016/j.enbuild.2015.11.053
Bolaños, T., & Moscoso, A. (2011). Consideraciones y seleccio´n de especies vegetales para su implementacio´n en ecoenvolventes arquitecto´nicos: una herramienta metodolo´gica. Revista Nodo, 5(10), 5-20. Recuperado de: http://csifesvr.uan.edu.co/index.php/nodo/article/view/138
Ciampi, M., Leccese, F., & Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy(75), 491-502. DOI: https://doi.org/10.1016/j.solener.2003.09.010.
Design Builder. (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de: https://www.designbuilder.co.uk/
EnergyPlus. (19 de Octubre de 2017). EneryPlus. Recuperado de: https://energyplus.net/
Fantucci, S., Marinosci, C., Serra, V., & Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia(111), 619-628. DOI: https://doi.org/10.1016/j.egypro.2017.03.224
Gagliano, A., Patania, F., Nocera, F., & Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. DOI: https://doi.org/10.1016/j.enbuild.2013.12.060
Gaillard, L., Giroux-Julien, S., Ménézo, C., & Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy(103), 223-241. DOI: http://dx.doi.org/10.1016/j.solener.2014.02.018
Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D., & Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews(60), 1052-1065. DOI: https://doi.org/10.1016/j.rser.2016.01.130
Giancola, E., Sanjuan, C., Blanco, E., & Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings(54), 363-375. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.035
Gratia, E., & De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings(36), 41-60. DOI: https://doi.org/10.1016/j.enbuild.2004.05.004
Gratia, E., & De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy(81), 435-448. DOI: https://doi.org/10.1016/j.solener.2006.08.006
Haase, M., Silva, F. M., & Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings(41), 361-373. DOI: https://doi.org/10.1016/j.enbuild.2008.11.008
Høseggen, R., Wachenfeldt, B. J., & Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade Energy and Buildings(40), 821-827. DOI: https://doi.org/10.1016/j.enbuild.2007.05.015
Jentsch, M. F., Bahaj, A. S., & James, P. A. (2008). Climate change future proofing of buildings Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. DOI: https://doi.org/10.1016/j.enbuild.2008.06.005
Kim, D.-W., & Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings(43), 3635-3645. DOI: https://doi.org/10.1016/j.enbuild.2011.09.038
Marinosci, C., Semprini, G., & Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.044
Marinosci, C., Strachan, P., Semprini, G., & Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings(43), 853-863. DOI: https://doi.org/10.1016/j.enbuild.2010.12.005
Mateus, N. M., Pinto, A., & Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings(75), 511-522. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.02.043
Meteonorm. (22 de 02 de 2018). Meteonorm. Recuperado de: http://www.meteonorm.com/
Peci López, F., Jensen, R., Heiselberg, P., & Ruiz de Adana, M. (2012).Experimental analysis and model validation of an opaque ventilated facade. Building and Environment(56), 265-275. DOI: https://doi.org/10.1016/j.buildenv.2012.03.017
Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design, 61-66. Recuperado de: http://www.ebd.lth.se/fileadmin/energi_byggnadsdesign/images/Publikationer/Bok-EBD-R3-G5_alt_2_Harris.pdf
Pyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F., & Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal-energy performance simulations. Solar Energy(153), 224-237. DOI: http://dx.doi.org/10.1016/j.solener.2017.05.040
Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de: http://revistas.uan.edu.co/index.php/nodo/article/view/538
Stec, W. J., Paassen, A. H., & Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings(37), 419-427. DOI: https://doi.org/10.1016/j.enbuild.2004.08.008
Theodosiou, T., Tsikaloudaki, K., & Bikas, D. (2017). Analysis of the Thermal Bridging Effect on Ventilated Facades. Procedia Environmental Sciences(38), 397-404 DOI: https://doi.org/10.1016/j.proenv.2017.03.121
U.S. Department of Energy. (22 de 02 de 2018). energy.gov. Recuperado de: https://energy.gov/
Varini, C. (2011). ECOENVOLVENTES R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de: http://www.irbnet.de/daten/iconda/CIB_DC22949.pdf
Varini, C. (2013). ECOENVELOPES R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. doi: https://doi.org/10.3989/ic.11.147
Velasco, R., & Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates . eCAADe 2011 Respecting fragile places : proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (págs. 539-548). Ljubljana: edited by Tadeja Zupancic ... [et al.]. - Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture.
Velasco, R., Hudson, R., & Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: a pilot project for Colombia. 12th Conference on Advanced Building Skins (págs. 995-1003). Bern: Advanced Building Skins GmbH.
Vernay, D. G., Raphael, B., & Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics(28), 412-424. DOI: http://dx.doi.org/10.1016/j.aei.2014.06.003