Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
A Revista de Arquitectura está catalogada como uma publicação de acesso aberto. Mais informações >>>
Os autores conservarão os direitos autorais e garantirão à Revista de Arquitectura o direito de primeira publicação da obra, o qual estará simultaneamente sujeito à licença Creative Commons (Atribuição-NãoComercial 4.0 Internacional CC BY-NC).
Os autores assinarão uma licença não exclusiva de distribuição da versão da obra publicada mediante a assinatura do documento RevArq FP03 Autorização para reprodução de artigo.
O autoarquivamento estará de acordo com os critérios expressos pelo SHERPA/RoMEO e pela classificação verde.
Para ver esses lineamentos, por favor, consultar >>>
Resumo
O desempenho lumínico nos espaços de trabalho está relacionado as transformações das aberturas das fachadas ao longo do tempo. Esta pesquisa objetivou analisar o comportamento da luz natural em modelos de edifícios de escritórios em Vitória ES. A metodologia utilizada foram simulações computacionais através do Software DIVA em uma sala de trabalho de edifícios representativos de três períodos: de 1950 a 1979, de 1980 a 1999 e de 2000 a 2016. Os resultados mostraram que o modelo típico do período de 1950 a 1979 apresentou o maior percentual de Iluminância Útil da Luz do Dia. Nenhum dos modelos atingiu o mínimo recomendado para o parâmetro de uniformidade. Em relação ao ofuscamento, os maiores percentuais de horas simuladas dentro da faixa intolerável, são registrados no 10° pavimento e nas simulações com orientação da fachada a oeste. De forma geral, a presença do entorno obstruído impactou mais o desempenho dos edifícios contemporâneos.
Palavras-chave:
Referências
Associação Brasileira de Normas Técnicas. (2013). NBR ISO 8995-1 Iluminação de ambientes de trabalho. Associação Brasileira de Normas Técnicas.
Andrade, C. M. (2007). A história do ambiente de trabalho em edifícios de escritórios: um século de transformações. C4.
Araújo, I. Á. L. de & Cabús, R. C. (2007, 8-10 ago.). Influência da luz natural refletida pelo entorno na iluminação de edifícios em cânions urbanos no trópico úmido. Proceedings...ENCAC 2007 IX Encontro Nacional e V Latino-Americano de Conforto no Ambiente Construído, (1), 86-95. Ouro Preto.
Arsenault, H., Hébert, M. & Dubois, M. C. (2012). Effects of glazing colour type on perception of daylight quality, arousal, and switch-on patterns of electric light in office rooms. Building and Environment, 56, 223-231. https://doi.org/10.1016/j.buildenv.2012.02.032
Baker, N. V., Fanchiotti, A. & Steemers, K. (2010). Daylighting in Architecture: A European reference book. https://doi.org/10.4324/9781315067223
Bardhan, R. & Debnath, R. (2016). Towards daylight inclusive bye-law: Daylight as an energy saving route for affordable housing in India. Energy for Sustainable Development, 34, 1-9. https://doi.org/10.1016/j.esd.2016.06.005
Boubekri, M., Cheung, I. N., Reid, K. J., Wang, C.-H. & Zee, P. C. (2014). Impact of windows and daylight exposure on overall health and sleep quality of offi ce workers. Journal of Clinical Sleep Medicine, 10(6), 603-611. https://doi.org/http://dx.doi.org/10.5664/jcsm.3780
Boyce, P. R. (2014). Human Factors in Lighting (3 ed.). Taylor & Francis Group.
Brembilla, E. & Mardaljevic, J. (2019). Climate-based daylight modelling for compliance verification: Benchmarking multiple state-of-the-art methods. Building and Environment, 158(maio), 151-164. https://doi.org/10.1016/j.buildenv.2019.04.051
Chen, W., Li, D. H. W., Li, S. & Lou, S. (2021). Predicting diffuse solar irradiance on obstructed building façades under irregular skyline patterns for various ISO/CIE standard skies. Journal of Building Engineering, 40, 102370. https://doi.org/10.1016/j.jobe.2021.102370
Dias, A. R. D., Carvalho, J. P. V., Hazboun, V. D. & Pedrini, A. (2018). Influência de métricas dinâmicas na avaliação do aproveitamento da luz natural em clima tropical. Ambiente Construído, 18(3), 29-47. https://doi.org/10.1590/s1678-86212018000300266
Eltaweel, A. & Yuehong, S. (2017). Using integrated parametric control to achieve better daylighting uniformity in an office room: A multi-step comparison study. Energy and Buildings, 152, 137-148. https://doi.org/10.1016/j.enbuild.2017.07.033
Farkas, A. B. & Laranja, A. C. (2019). Análise da influência do pé-direito na disponibilidade de iluminação natural no ambiente interno. Cadernos de Arquitetura e Urbanismo, 25(37), 189. https://doi.org/10.5752/p.2316-1752.2018v25n37p189
Instituto Brasileiro de Geografia e Estatística. (2010). Senso 2010. www.ibge.gov.br
Jakubiec, J. A. & Reinhart, C. F. (2012). The “adaptive zone”: A concept for assessing discomfort glare throughout daylit spaces. Lighting Research and Technology, 44(2), 149-170. https://doi.org/10.1177/1477153511420097
Lamberts, R., Dutra, L. & Pereira, F. O. R. (2014). Eficiência energética na arquitetura (3 ed.). Eletrobras/Procel.
Laranja, A. C., Ferreira, N. S. & Alvarez, C. E. de. (2016). Análise das relações entre a geometria urbana e aorientação das aberturas na disponibilidade de iluminação natural no ambiente interno. Labor & Engenho, 10(1), 31-45.
Laboratório de Eficiência Energética em Edificações. (2019). Seção downloads. Arquivos climáticos em formato EPW. http://www.labeee.ufsc.br/downloads
Leal, L. de Q. & Leder, S. M. (2018). Iluminação natural e ofuscamento: estudo de caso em edifícios residenciais multipavimentos. Ambiente Construído, 18(4), 97-117. https://doi.org/10.1590/s1678-86212018000400296
Lee, K. S., Han, K. J. & Lee, J. W. (2017). The impact of shading type and azimuth orientation on the daylighting in a classroom-focusing on effectiveness of façade shading, comparing the results of DA and UDI. Energies, 10(5). https://doi.org/10.3390/en10050635
Li, D. H. W. & Tsang, E. K. W. (2008). An analysis of daylighting performance for office buildings in Hong Kong. Building and Environment, 43(9), 1446-1458. https://doi.org/10.1016/j.buildenv.2007.07.002
Mangkuto, R. A., Rohmah, M. & Asri, A. D. (2016). Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Applied Energy, 164, 211-219. https://doi.org/10.1016/j.apenergy.2015.11.046
Maioli, R. N., Barros, M. C. de S. L. S. B., Barros, J. D. P. de, Igor, I. F. F. M., Coninck, I. M. & Pagel, É. C. (2016, 21-23 set.). A transformação da fachada na tipologia construtiva de edifícios comerciais verticais em Vitória-ES e sua relação com o conforto ambiental. Em XVI Encontro Nacional de Tecnologia do Ambiente Construído: desafios e perspectivas da internacionalização da construção (pp. 1220-1232). https://www.researchgate.net/publication/341525202_A_TRANSFORMACAO_DA_FACHADA_NA_TIPOLOGIA_CONSTRUTIVA_DE_EDIFICIOS_COMERCIAIS_VERTICAIS_EM_VITORIA-ES_E_SUA_RELACAO_COM_O_CONFORTO_AMBIENTAL
Maioli, R. N., Taufner, M. D. & Alvarez, C. E. de. (2014). A influência das prateleiras de luz no aproveitamento da luz natural sob obstrução externa. Revista de Arquitectura, 16, 105-113. https://doi.org/10.14718/revarq.2014.16.12
Mapelli, Y. R., Laranja, A., Coelho & Alvarez, C. E. de. (2018). Avaliação de desempenho entre as tipologias de aberturas zenital e lateral no quesito iluminação natural de ambientes internos. Cadernos Proarq, 31, 83-99. http://lpp.ufes.br/sites/lpp.ufes.br/files/field/anexo/cadernosproarq31.pdf
Nabil, A. & Mardaljevic, J. (2006). Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings, 38(7), 905-913. https://doi.org/10.1016/j.enbuild.2006.03.013
Pereira, R. C., Pereira, F. O. R. & Claro, A. (2008). Caracterização da contribuição do entorno na avaliação da iluminação natural em edificações. Ambiente Construído, 8(4), 103-116.
Petersen, S., Momme, A. J. & Hviid, C. A. (2014). A simple tool to evaluate the effect of the urban canyon on daylight level and energy demand in the early stages of building design. Solar Energy, 108, 61-68. https://doi.org/10.1016/j.solener.2014.06.026
Pilechiha, P., Mahdavinejad, M., Pour Rahimian, F., Carnemolla, P. & Seyedzadeh, S. (2020). Multi-objective optimisation framework for designing office windows: Quality of view, daylight and energy efficiency. Applied Energy, 261, 114356. https://doi.org/10.1016/j.apenergy.2019.114356
Prefeitura Municipal de Vitória. (2018). Plano Diretor Urbano do Município de Vitória. https://www.vitoria.es.gov.br/prefeitura/plano-diretor-urbano
Reinhart, C. F. & Walkenhorst, O. (2001). Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings, 33(7), 683-697. https://doi.org/10.1016/S0378-7788(01)00058-5
Ribeiro, P. V. S. & Cabús, R. C. (2019). Análise da influência da malha de pontos em índices de avaliação de desempenho da luz natural. Ambiente Construído, 19(4), 317-333. https://doi.org/10.1590/s1678-86212019000400358
Sun, Yanyi, Liang, R., Wu, Y., Wilson, R. & Rutherford, P. (2018). Glazing systems with Parallel Slats Transparent Insulation Material (PS-TIM): Evaluation of building energy and daylight performance. Energy and Buildings, 159, 213-227. https://doi.org/10.1016/j.enbuild.2017.10.026
Sun, Yue, Liu, X., Qu, W., Cao, G. & Zou, N. (2020). Analysis of daylight glare and optimal lighting design for comfortable office lighting. Optik, 206, 164291. https://doi.org/10.1016/j.ijleo.2020.164291
Taleb, H. M. & Antony, A. G. (2020). Assessing different glazing to achieve better lighting performance of office buildings in the United Arab Emirates (UAE). Journal of Building Engineering, 28, 101034. https://doi.org/10.1016/j.jobe.2019.101034
Turan, I., Chegut, A., Fink, D. & Reinhart, C. (2020). The value of daylight in office spaces. Building and Environment, 168, 106503. https://doi.org/10.1016/j.buildenv.2019.106503
Wienold, J. & Christoffersen, J. (2006). Evaluation methods and development of new glare prediction model for daylight environments with the use of CCD cameras and RADIANCE. Energy and Buildings, 38(743-757). https://doi.org/https://doi.org/10.1016/j.enbuild.2006.03.017
Yeom, S., Kim, H., Hong, T. & Lee, M. (2020). Determining the optimal window size of office buildings considering the workers’ task performance and the building’s energy consumption. Building and Environment, 177, 106872. https://doi.org/10.1016/j.buildenv.2020.106872