Centro Cultural Gabriel García Márquez (2004 ? 2008). Calle 11 No. 5 - 60 Bogotá, Colombia Arquitecto Rogelio Salmona Fotografía: Cristian Camilo Martínez Díaz (2014)
How to Cite
Herrera Sosa, L. C. (2014). Efficiency of passive cooling strategies in hot dry weather. Revista De Arquitectura (Bogotá), 16(1), 86–95. https://doi.org/10.14718/RevArq.2014.16.10
License

Revista de Arquitectura is an open access journal. More information...

Authors retain copyright and grant to the Revista de Arquitectura the right of first publication, which will be simultaneously subject to the Creative Commons (CC) BY-NC license.

Authors will sign a non-exclusive distribution license for the published version of the article by completing (RevArq FP03 Permission to Reproduce).

Self-archiving will comply with SHERPA/RoMEO guidelines and the Green classification.

To see in detail these guidelines, please consult...

Abstract

This paper presents the results of an evaluation done on the cooling efficiency that could be reached with the use of six passive cooling techniques performed on roof tanks in hot dry weather. The procedure consisted in monitoring at field, during summer 2012, experimental units with the passive cooling techniques: Indirect Evaporative Cooling (IEC), Solar Protection (SP), Night Radiative Cooling (NRC), Thermal Insulation (TI), and Thermal Mass (TM). The experimental unit was compared to a control unit built with the same characteristics, dimensions, and position. With the results obtained at field, there was a calculation of the average cooling potential in each of the applied passive techniques, in order to determine the cooling efficiency (CE). The passive technique with the highest cooling potential average was IEC+TI+NRC with 822.89 Wh/m2day; and those that followed it were IEC+SP with 764.19 Wh/m2day, and IEC+TI+NRC+TM with 532.78 Wh/m2day.

Keywords:

References

ANSI/ASHRAE Standard 55-04 (2010). Thermal Environmental Conditions for Human Occupancy, Atlanta GA, American Society of Heating Refrigeration and Air-conditioning Engineers.

ASHRAE (2009). Handbook of Fundamentals. Section 9.10. Atlanta GA, American Society of Heating Refrigeration and Air-conditioning Engineers.

Givoni, B. (1994). Passive and low energy cooling of buildings. New York: Wiley.

Balaras, C. A. (1996). The role of thermal mass on the cooling load of buildings. An overview of computational methods. Energy and Building, 24, 1-10.

González, E. (1989). Evaluación de sistemas pasivos de enfriamiento y su aplicación en el diseño de viviendas. Informe de investigación CONDES, Universidad de Zulia, Maracaibo, Venezuela.

González, E. (1997a). ÿtude de matériaux et de techniques du bâtiment pour la conception architecturale bioclimatique en climat chaud et humide. Thèse de Doctorat en Energétique de l?ÿcole des Mines des Paris, France.

González, E. (1997b). Técnicas de enfriamiento pasivo. Resultados experimentales en el clima cálido y húmedo de Maracaibo, Venezuela. CIT, Información Tecnológica, 8(5), 99-103.

González, S. (2010) Estudio experimental del comportamiento térmico de sistemas pasivos de enfriamiento en clima cálido-húmedo. Tesis de Maestría publicada. Universidad Internacional de Andalucía.

Herrera, L. (2009). Evaluación de estrategias bioclimáticas aplicadas en edificios y su impacto en la reducción del consumo de agua en equipos de enfriamiento evaporativo directo. Tesis de Doctorado publicada. Universidad de Colima, Facultad de Arquitectura, Coquimatlán.

Hinz, E. (2006). Estudio del comportamiento térmico de un sistema pasivo de enfriamiento evaporativo indirecto con cobertura vegetal en un clima tropical. Madrid: DEA Ciencias Ambientales, Universidad Politécnica de Madrid.

Instituto Nacional de Estadística, Geografía e Informática (INEGI) (2014). Nombre del documento. Recuperado de: http://smn.cna.gob.mx/index.php

IMPCO (1999). Calculando enfriamiento evaporativo. Recuperado de: http://www.impco.com

International Organization for Standardization. ISO 7726 (1998). Ergonomics of the Thermal Environment: Instruments of measuring physycal quantities. Switzerland: ISO.

International Organization for Standardization. ISO 7730 (1995). Moderate Thermal Environments - Determination of the PMV and PPD indices and specification of the conditions for thermal confort. Switzerland: ISO.

Norma mexicana NMX-C-460-onncce (2009). Industria de la construcción aislamiento térmico valor "R" para las envolventes de vivienda por zona térmica para la República Mexicana. Diario oficial de la Federación.

Mihalakakou, J. O. y Santamouris, M. (1996). On the heating potential of buried pipes techniques-application in Ireland. Energy and Buildings, 19-25.

Reference by

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

Sistema OJS 3 - Metabiblioteca |