Artículos que luego del proceso de revisión son aceptados, pero se encuentran en proceso de edición
How to Cite
Rincón-Martínez, J. C. (2024). EHDaP: Environmental Habitability Data Processor. Revista De Arquitectura, 27(1). https://doi.org/10.14718/RevArq.2025.27.5365
License
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Revista de Arquitectura is an open access journal. More information...

Authors retain copyright and grant to the Revista de Arquitectura the right of first publication, which will be simultaneously subject to the Creative Commons (CC) BY-NC license.

Authors will sign a non-exclusive distribution license for the published version of the article by completing (RevArq FP03 Permission to Reproduce).

Self-archiving will comply with SHERPA/RoMEO guidelines and the Green classification.

To see in detail these guidelines, please consult...

Abstract

The human, technological, financial, and time resources required to perform data analysis in environmental habitability studies can be onerous, due to the software, analysis method, and variables considered. The Environmental Habitability Data Processor (EHDaP) is a computer tool that processes the environmental habitability studies' data in a simple and efficient way, based on three correlation methods: Simple linear regression, average by thermal sensation intervals and ANSI/ASHARAE 55. It is configured in spreadsheets based on functions, graphs and macros that allow to systematically correlate environmental variables with comfort votes from three analysis stages: Treatment of atypical data, correlation of variables and estimation of indicators and environmental models. The use of this computer tool offers significant efficiency in the resources used for data processing, allowing researchers a greater focus and dedication in the methodology used and the database consolidation. The EHDaP reliability has been demonstrated in recent thermal comfort research, since the results obtained are similar to those obtained manually using the different analysis methods.

Keywords:

References

ANSI/ASHRAE 55 (2023). Thermal environmental conditions for human occupancy. American Society of Heating, Refrigeration and Air-Conditioning Engineers. https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy

Arriaga-Osuna, M. F., Rincón-Martínez, J. C., & Martínez-Torres, K. E. (2024). Confort térmico adaptativo en cañón urbano: El caso de un clima mediterráneo. Ingeniería Investigación y Tecnología, 25(03), 1-11. https://doi.org/10.22201/fi.25940732e.2024.25.3.019

Arrieta, G., & Maristany, A. (2020). Rangos de confort estival de viviendas en Córdoba como referencia para el acondicionamiento natural. Avances en Energías Renovables y Medio Ambiente, 24(1), 7-18. http://sedici.unlp.edu.ar/handle/10915/138398

Auliciems, A. (1981). Towards a psycho-physiological model of thermal perception. International Journal Biometeorology, 25, 109-122. https://doi.org/10.1007/BF02184458

Auliciems, A., & de Dear, R. (1998). Thermal adaptation and variable indoor climate control. En: A. Auliciems (Ed.), Human bioclimatology. Advances in Bioclimatology (p. 5). Springer. https://doi.org/10.1007/978-3-642-80419-9_3

Boerstra, A., Kurvers, S., & Van der Linden, A. (2002). Thermal comfort in real live buildings: Proposal for a new dutch guideline. En H. Levin (Ed.), Proceedings of the 9th international conference on indoor air (pp. 629-634). https://www.irbnet.de/daten/iconda/CIB7514.pdf

Bojórquez, G., Luna, A., Romero, R., & Jiménez, V. (2020). Efecto de la temperatura de bulbo seco y humedad relativa en la sensación térmica percibida en espacios exteriores en clima cálido seco. Revista de Invención Técnica, 4(13), 21-29. https://doi.org/10.35429/JOTI.2020.13.4.21.29

Bravo, G., & González, E. (2001). Confort térmico en el trópico: Hacia un estándar en viviendas naturalmente ventiladas. Información Tecnológica, 12(5), 169-174. https://books.google.com.mx/books?id=WPLrWlW7CJAC&pg=PP2

Buonocore, C., De Vecchi, R., Scalco, V., & Lamberts, R. (2020). Thermal preference and comfort assessment in air-conditioned and naturally-ventilated university classrooms under hot and humid conditions in Brazil. Energy and Building, 211, 1-13. https://doi.org/10.1016/j.enbuild.2020.109783

Cardona, D., González, J., Rivera, M., & Cárdenas, E. (2013). Inferencia estadística. Módulo de regresión lineal simple. Universidad del Rosario. https://doi.org/10.48713/10336_10447

Casals-Tres, M., Arcas-Abella, J., & Pagès-Ramon, A. (2011). Habitabilidad, un concepto en crisis. Sobre su redefinición orientada hacia la sostenibilidad. Informes de la construcción, 63, 21-32. https://doi.org/10.3989/ic.11.061

Castro, M., Romero, L., Borré, C., & Anguiano, A. (2001). Habitabilidad, medio ambiente y ciudad. Ciudades, 51, 8-10. http://rniu.buap.mx/edit/revistas/contenido.php?id=51

Cheung, T., Schiavon, S., Parkinson, T., Li, P. & Brager, G. (2019). Analysis of the accuracy on PMV-PPD model using the ASHRAE Global Thermal Comfort Database II. Building and Environment, 153, 205-2017. https://doi.org/10.1016/j.buildenv.2019.01.055

Földváry-Ličina, V., Cheung, T., Zhang, H., de Dear, R., Parkinson, T., Arens, E., Chun, C., Schiavon, S., Luo, M., Brager, G., Li, P., Kaam, S., Adebamowo, M., Andamon, M., Babich, F., Bouden, C., Bukovianska, H., Candido, C., Cao, B., Carlucci, S., & Zhou, X. (2018). Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 142, 502-512. https://doi.org/10.1016/j.buildenv.2018.06.022

Garfias, A., & Guzmán, A. (2018). Metodología para el análisis de la habitabilidad urbana. Arquitectura y Urbanismo, 39(1), 75-87. https://www.redalyc.org/journal/3768/376858935007/html/

Gómez-Azpeitia, G., Bojórquez, G., & Ruiz, R. (2007). El confort térmico: dos enfoques teóricos enfrentados. Palapa, 2(001), 45-57. https://www.redalyc.org/pdf/948/94820107.pdf

Gómez-Azpeitia, G., Bojórquez-Morales, G., Pavel Ruiz, P., Marincic, I., González, E., & Tejeda, A. (2014). Extreme adaptation to extreme environments in hot dry, hot sub-humid and hot humid climates in Mexico. Journal of Civil Engineering and Architecture, 8(8), 929-942. https://www.davidpublisher.com/Public/uploads/Contribute/5549b892698c0.pdf

Hernández Aja, A. (2009). Calidad de vida y medio ambiente urbano. Indicadores locales de sostenibilidad y calidad de vida urbana. Revista INVI, 24(65), 79-111. https://revistainvi.uchile.cl/index.php/INVI/article/view/61930

Hernández, G., & Gómez, A. (2007). La temperatura ambiental y su vinculación con el aprovechamiento escolar. Palapa. Revista de Investigaciones Científicas en Arquitectura, 2(002), 21-30. https://www.redalyc.org/pdf/948/94820204.pdf

Humphreys, M. A., Nicol, J. F., & Raja, I. A. (2007). Field studies of indoor thermal comfort and the progress of the adaptive approach. Advances in Building Energy Research, 1(1), 55-88. https://doi.org/10.1080/17512549.2007.9687269

International Organization for Standardization (1995). ISO 10551: 1995 (E) Ergonomics of thermal environment - Assessment of the influence of the thermal environment using subjective judgment scales. ISO. https://cdn.standards.iteh.ai/samples/18636/dc297a9d7c6245d985cf8dd48e084fb5/ISO-10551-1995.pdf

International Organization for Standardization (2021). ISO 8996: 2021 (E). Ergonomics of the thermal environment - Determination of metabolic rate. ISO. https://cdn.standards.iteh.ai/samples/74443/186e4b0c383146d49b904be84cac03dd/ISO-8996-2021.pdf

International Organization for Standardization (2008). ISO 9920: 2008 (E). Ergonomics of the thermal environment - Estimation of thermal insulation and water vapour resistance of a clothing ensemble. ISO. https://cdn.standards.iteh.ai/samples/23394/f53b28ae813743d098d9153daafb3cd7/SIST-EN-ISO-9920-2008.pdf

Ji, W., Zhu, Y., & Cao, B. (2020). Development of the predicted thermal sensation (PTS) model using the ASHRAE Global Thermal Comfort Database. Energy and Building, 211, 1-12. https://doi.org/10.1016/j.enbuild.2020.109780

Jindal, A. (2018). Thermal comfort study in naturally ventilated school classrooms in composite climate of India. Building and Environment, 142, 34-46. https://doi.org/10.1016/j.buildenv.2018.05.051

Kelmansky, D. (2010). Regresión lineal simple. En Estadística (Q) (pp. 201-231). Universidad de Buenos Aires. http://www.dm.uba.ar/materias/estadistica_Q/2010/2/C014%20Regresion%20Lineal%20Simple%20.pdf

Liu, S., Schiavon, T., Prasanna Das, H., Jin, M., & Costas, J. (2019). Personal thermal comfort models with wearable sensors. Building and Environment, 162, 106281. https://doi.org/10.1016/j.buildenv.2019.106281

Loomans, M., Mishra, A., & Kooi, L. (2020). Long-term monitoring for indoor climate assessment-The association between objective and subjective data. Building and Environment, 179, 106978. https://doi.org/10.1016/j.buildenv.2020.106978

López, A., Chasco, C., & Navarrete, M. (2009). Auditoria urbana: Indicadores y tipología de las ciudades europeas. Aspectos territoriales del desarrollo: Presente y futuro, I, 173-189. https://repositorio.uam.es/handle/10486/663824

López-Cañedo, J. Y., Rincón-Martínez, J. C., & Fernández-Melchor, F. (2021). Estimation of thermal comfort by physical variable of the thermal environment: A study in open spaces at UABC-Sauzal, Mexico. Revista de Ciencias Tecnológicas (RECIT), 4(2), 58-80. https://doi.org/10.37636/recit.v425880

Luo, M., Xie, J., Yan, Y., Ke, Z., Yu, P., Wang, Z., & Zhang, J. (2020). Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II. Energy and Building, 210, 1-16. https://doi.org/10.1016/j.enbuild.2020.109776

Núñez-de Anda, A., Rincón-Martínez, J. C., Bojórquez-Morales, G., & Llamas-Estrada, A. (2024). Confort higrotérmico en espacios públicos abiertos de clima mediterráneo en periodo de transición térmica. Ingeniería Investigación y Tecnología, 25(01),1-12. https://doi.org/10.22201/fi.25940732e.2024.25.1.005

Martínez-Bermúdez, E., & Rincón-Martínez, J. C. (2024). Estimación del confort térmico en espacios exteriores: evaluación del periodo frío en Ensenada, Baja California. Revista de Arquitectura, 26(2), 151-166. https://doi.org/10.14718/RevArq.2024.26.3637

Mayorga, J. (2012). Arquitectura y confort térmico: Teoría, cálculo y ejercicios. Plaza y Valdés Editores.

Mishra, A. (2018). Statistical analysis of data from thermal comfort field studies. https://doi.org/10.13140/RG.2.2.14484.60801

Mishra, A., & Ramgopal, M. (2015). A thermal comfort field study of naturally ventilated classrooms in Kharagpur, India. Building and Environment, 92, 396-406. https://doi.org/10.1016/j.buildenv.2015.05.024

Montazami, A., Gaterell, M., Nicol, F., Lumley, M., & Thoua, C. (2017). Developing an algorithm to illustrate the likelihood of the dissatisfaction rate with relation to the indoor temperature in naturally ventilated classrooms. Building and Environment, 111, 61-71. https://doi.org/10.1016/j.buildenv.2016.10.009

Páramo, P., & Burbano Arroyo, A. M. (2013). Valoración de las condiciones que hacen habitable el espacio público en Colombia. Territorios, (28), 187-206. https://revistas.urosario.edu.co/index.php/territorios/article/view/2557

Páramo, P., Burbano, A., & Fernández-Londoño, D. (2016). Estructura de indicadores de habitabilidad del espacio público en ciudades latinoamericanas. Revista de Arquitectura (Bogotá), 18(2), 6-26. https://doi.org/10.14718/RevArq.2016.18.2.2

Izquierdo Ramírez, R., & López Cervantes, A. (2018). Ámbitos de la habitabilidad para el estudio del espacio público. Caso de estudio frontera, Centla, Tabasco. Vivienda y Comunidades Sustentables, (4), 45-60. https://doi.org/10.32870/rvcs.v0i4.90

Rincón, J. (2019). Confort térmico en interiores: Estimación con los enfoques adaptativo y predictivo. Universidad Autónoma de Baja California.

Rincón-Martínez, J. C. (2023). Basic methods used for data analysis in adaptive thermal comfort studies. Ingeniería Investigación y Tecnología, 24(01), 1-17. https://doi.org/10.22201/fi.25940732e.2023.24.1.002

Rincón, J., Núñez, A., & Fernández, F. (2023). Indoor thermal comfort from the estimation thermal environment’s physical variables in temperate-dry bioclimate. En D. Bienvenido-Huertas (Ed.), Cooling technologies - technologies and systems to guarantee thermal comfort in efficient buildings. https://doi.org/10.5772/intechopen.1001123

Rincón, J. [Julio Rincón]. (2024). EHDaP: Environmental Habitability Data Processor [Video]. YouTube. https://youtu.be/mDen12jKQ5c

Valladares, R., Chávez, M., & López de Asiain, M. (2015). Indicadores urbanos de habitabilidad: ¿qué medir y por qué? En R. Valladares (Coord.), Diversas visiones de la habitabilidad (pp. 15-38). Red Nacional de Investigación. http://hdl.handle.net/10553/112900

Villaseñor Corona, E., Martín del Campo Saray, F. J., Bojórquez Morales, G., & García Gómez, C. (2021). Estudio de habitabilidad ambiental en espacios públicos exteriores de El Grullo, Jalisco, México. Anales de Investigación en Arquitectura, 11(2). https://doi.org/10.18861/ania.2021.11.2.3177

Wang, Z., Zhang, H., He, Y., Luo, M., Li, Z., Hong, T., & Ln, B. (2020). Revisiting individual and group differences in thermal comfort based on ASHRAE database. Energy and Building, 219. https://doi.org/10.1016/j.enbuild.2020.110017

Reference by

Sistema OJS 3 - Metabiblioteca |