Thermal comfort in naturally ventilated educational buildings: a study in temperate-dry bioclimate
Cómo citar
Rincón-Martínez, J. C. (2023). Confort térmico en edificios educativos naturalmente ventilados: un estudio en bioclima templado-seco. Revista De Arquitectura (Bogotá), 25(1), 12–24. https://doi.org/10.14718/RevArq.2023.25.3051
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

La Revista de Arquitectura se cataloga como una publicación de acceso abierto. Más información >>>

Los autores conservarán los derechos de autor y garantizarán a la Revista de Arquitectura el derecho de primera publicación de la obra, el cual estará simultáneamente sujeto a la licencia Creative Commons (CC) BY-NC.

Los autores suscribirán una licencia no exclusiva de distribución de la versión de la obra publicada mediante la firma de (RevArq FP03 Autorización reproducción)

El Autoarchivo estará de acuerdo con los criterios expresados por SHERPA/RoMEO y la clasificación Verde.

Para ver en detalle estos lineamientos, por favor consultar >>>

Resumen

El bienestar, la eficiencia y el confort de las personas pueden verse afectados por las condiciones adversas del ambiente térmico. En México, los estudios que abordan dicho fenómeno se han desarrollado principalmente en sitios con bioclimas cálidos (seco y húmedo), y poca investigación hay sobre bioclimas templados o semifríos. Este trabajo presenta los resultados de un estudio sobre confort térmico desarrollado con el enfoque adaptativo, en edificios naturalmente ventilados, durante la transición térmica del periodo frío al periodo cálido en Ensenada, Baja California (bioclima templado-seco). El estudio es de tipo correlacional y fue analizado con 987 evaluaciones y el registro simultáneo de la temperatura, la humedad relativa y la velocidad de viento, durante el periodo del 24 de abril al 22 de mayo de 2017. Los cuestionarios aplicados se diseñaron con la ISO 10551 y la ANSI/ASHRAE 55; asimismo, los instrumentos de medición responden a la ISO 7726. Los datos recabados fueron procesados estadísticamente con el método de medias por intervalos de sensación térmica. La temperatura neutra resultó en 20,2 °C, con un rango de confort de 17,7 °C-22,7 °C; los sujetos reflejaron mayor adaptación a temperaturas por encima de la temperatura neutra, a partir del emprendimiento de acciones voluntarias o involuntarias cuyo objetivo se enfocaba en reanudar el confort térmico de forma inmediata.

Palabras clave:

Citas

Ambriz, J. (2005). La temperatura afecta la productividad: UAM. Investigación y Desarrollo ID, invdes. http://www.invdes.com.mx

American Society of Heating, Refrigerating and Air Conditioning Engineers, ANSI/ASHRAE 55 (2017). Thermal Environmental Conditions for Human Occupancy. https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2017_d_20200731.pdf

Amindeldar, S., Heidari, S., & Khalili, M. (2017). The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in Tehran in cold season. Sustainable Cities and Society, 32(25), 153-159. https://doi.org/10.1016/j.scs.2017.03.024

Atmaca, A. B., & Gedik, G. Z. (2020). Determination of thermal comfort of religious buildings by measurement and survey methods: Examples of mosques in a temperate-humid climate. Energy and Buildings, 30. https://doi.org/10.1016/j.jobe.2020.101246

Atmaca, A. B., & Gedik, G. Z. (2019). Evaluation of mosques in terms of thermal comfort and energy consumption in a temperate-humid climate. Energy and Buildings, 195, 195-204. https://doi.org/10.1016/j.enbuild.2019.04.044

Auliciems, A., & Szokolay, S. (1997). Thermal comfort- Notes of passive and low energy architecture international. PLEA, University of Queensland.

Bassoud, A., Khelafi, H., Mokhtari, A. M., & Bada, A. (2021). Evaluation of summer thermal comfort in arid desert areas. Case study: Old adobe building in Adrar (South of Algeria). Building and Environment, 205. https://doi.org/10.1016/j.buildenv.2021.108140

Brager, G., & de Dear, R. (1998). Thermal adaptation in the build environment: A literature review. Energy and Buildings, 27(1), 83-96. https://doi.org/10.1016/S0378-7788(97)00053-4

Cihan, T., & Gulden, G. A. (2019). The relation between thermal comfort and human-body exergy consumption in a temperate climate zone. Energy and Buildings, 205. https://doi.org/10.1016/j.enbuild.2019.109548

Chang, S., He, W., Yan, H., Yang, L., & Song, C. (2021). Influences of vernacular building spaces on human thermal comfort in China’s arid climate areas. Energy and Buildings, 244. https://doi.org/10.1016/j.enbuild.2021.110978

Cohen, P., Shashua-Bar, L., Keller, R., Gil-Ad, R., Yaakov, Y., Lukyanov, V., Bar (Kutiel), P., Tanny, J., Cohen, S., & Potchter, O. (2019). Urban outdoor thermal perception in hot arid Beer Sheva, Israel: Methodological and gender aspects. Building and Environment, 160. https://doi.org/10.1016/j.buildenv.2019.106169

COPLADE. (2015). Población de Baja California y sus Municipios. Apuntes de población de Baja California, México. http://www.bajacalifornia.gob.mx/Documentos/coplade/pub-sociodemograficas/2021/Municipios-comunidades-poblacion.pdf

Fuentes, V., & Figueroa, A. (1990). Criterios de adecuación bioclimática en la arquitectura. Instituto Mexicano del Seguro Social.

Forgiarini-Rupp, R., Giraldo-Vásquez, N., & Lamberts, R. (2015). A review of human thermal comfort in the built environment. Energy and Buildings, 105, 178-205. https://doi.org/10.1016/j.enbuild.2015.07.047

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen [para adaptarlo a las condiciones de la República Mexicana]. Instituto de Geografía, Universidad Nacional Autónoma de México.

Gargiulo, C. (2014). Aprendizajes en las escuelas del siglo XXI: Notas técnicas. Banco Interamericano de Desarrollo. Dirección de Educación.

Gómez-Azpeitia, G., Bojórquez-Morales, G., Ruiz, P., Marincic, I., González, E., & Tejeda, A. (2014). Extreme adaptation to extreme environments: Case study of hot dry, hot sub-humid, and hot humid climates in Mexico. Journal of Civil Engineering and Architecture, 8(8), 929-942. https://pdfs.semanticscholar.org/c781/3583ba35f783dc75abae46c28763e13ef055.pdf

Gómez-Azpeitia, G., Ruiz, R., Bojórquez, G., & Romero, R. (2007). Monitoreo de Condiciones de Confort Térmico: Reporte Técnico (Producto 3), CONAFOVI 2004-01-20. Comisión Nacional del Fondo para Vivienda, Proyecto Confort Térmico y Ahorro de Energía en la Vivienda Económica en México, Regiones de Clima Cálido Seco y Húmedo, Colima.

Humphreys, M. (1978). Outdoor temperatures and comfort indoors, Batiment International. Building Research and Practice, 6 (2), 92. https://doi.org/10.1080/09613217808550656

Humphreys, M., & Nicol, F. (2002). The Validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings, 34, 667-684. http://dx.doi.org/10.1016/S0378-7788(02)00018-X

Humphreys, M., & Nicol, F. (1998). Understanding the adaptive approach to thermal comfort. ASHRAE Transactions, Technical Bulletin, 104(1).

INEGI. (2009). Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Ensenada, Baja California (Clave geoestadística 02001). Instituto Nacional de Estadística y Geografía.

International Organization for Standardization. (1995). ISO 10551 Ergonomics of thermal enviroment – Assessment of the influence of the thermal environment using subjective judgement scales. ISO.

International Organization for Standardization. (1998). ISO 7726 Ergonomics of the thermal environment - Instruments for Measuring Physical Quantities, 2dn edition. ISO.

International Organization for Standardization. (2004). ISO 8996 Ergonomics of the thermal environment - Determination of Metabolic Rate, 2nd edition. ISO.

International Organization for Standardization. (2005). ISO 7730 Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, 3rd edition. ISO.

Jeong, B., Kim, J., Chen, D., & de Dear, R. (2022). Comparison of residential thermal comfort in two different climates in Australia. Building and Environment, 211, 108706. https://doi.org/10.1016/j.buildenv.2021.108706

Liu, S., Kwok, Y. T., Lau, K. K. L., Ouyang, W., & Ng, E. (2020). Effectiveness of passive design strategies in responding to future climate change for residential buildings in hot and humid Hong Kong. Energy and Buildings, 228, 110469. https://doi.org/10.1016/j.enbuild.2020.110469

Manavvi, S., & Rajasekar, E. (2022). Evaluating outdoor thermal comfort in urban open spaces in a humid subtropical climate: Chandigarh, India. Building and Environment, 209, 108659. https://doi.org/10.1016/j.buildenv.2021.108659

Ministerio de Educación. (2015). Plan estratégico de infraestructura escolar. Departamento de Infraestructura Escolar de Chile.

Mishra, A., Loomans, M., & Hensen, J. (2016). Thermal comfort of heterogeneous and dynamic indoor conditions-An overview. Building and Environment, 109, 82-100. https://doi.org/10.1016/j.buildenv.2016.09.016

Nikolopoulou, M., & Steemers, K. (2003). Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings, 35, 95-101. https://doi.org/10.1016/s0378-7788(02)00084-1

Olgyay, V. (1963). Arquitectura y clima. Manual de diseño bioclimático para arquitectos y urbanistas. Editorial Gustavo Gili.

Oropeza-Pérez, I., Petzold-Rodríguez, A., & Bonilla-López, C. (2017). Adaptive thermal comfort in the main Mexican climate conditions with and without passive cooling. Energy and Buildings, 145, 251-258. https://www.sciencedirect.com/science/article/abs/pii/S0378778817313014

Ozarisoy, B., & Altan, H. (2021). Regression forecasting of ‘neutral’ adaptive thermal comfort: A field study investigation in the south-eastern Mediterranean climate of Cyprus. Building and Environment, 202, 108013. https://doi.org/10.1016/j.buildenv.2021.108013

Proyecto Banco Interamericano de Desarrollo. (2015). Proyecto BID Aprendizaje en las escuelas del siglo XXI. BID.

Romero, R., Bojórquez, G., Corral, M., & Gallegos, R. (2013). Energy and the occupant’s thermal perception of low-income dwellings in hot-dry climate: Mexicali, México. Renewable Energy, 49, 267-270. https://doi.org/10.1016/j.renene.2012.01.017

Shrestha, M., Rijal, H. B., Kayo, G., & Shukuya, M. (2021). A field investigation on adaptive thermal comfort in school buildings in the temperate climatic region of Nepal. Building and Environment, 190, 107523. https://doi.org/10.1016/j.buildenv.2020.107523

SMN-CONAGUA. (2017). Datos climáticos registrados por la Estación Meteorológica Automática BC-02 Ensenada, ubicada en la Presa Emilio López Zamora al norte de Ensenada, Baja California (latitud 31º53'29" N, longitud 116º36'11" W, altitud 32.0 msnm). Servicio Meteorológico Nacional (SMN-CONAGUA), periodo 2000-2017.

Szokolay, S. (2004). Introduction to architectural science: The basis of sustainable design. Architectural Press, Elsevier.

Terence, W., & Lyrian, D. (2020). A new adaptive thermal comfort model for homes in temperate climates of Australia. Energy & Buildings, 210, 109728. https://doi.org/10.1016/j.enbuild.2019.109728

Vázquez-Torres, C.E., & Gómez-Amador, A. (2021). Impact of indoor air volume on thermal performance in social housing with mixed mode ventilation in three different climates. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2021.05.002

Wei, D., Yang, L., Bao, Z., Lu, Y., & Yang, H. (2022). Variations in outdoor thermal comfort in an urban park in the hot-summer and cold-winter region of China. Sustainable Cities and Society, 77, 103535. https://doi.org/10.1016/j.scs.2021.103535

Yan, H., Liu, Q., Zhao, W., Pang, C., Dong, M., Zhang, H., Gao, J., Wang, H., Hu, B., Yang, L., & Wang, L. (2020). The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China. Building and Environment, 177, 106898. https://doi.org/10.1016/j.buildenv.2020.106898

Yao, J., Yang, F., Zhuang, Z., Shao, Y., & Yuan, P. F. (2018). The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in a cold season in Lujiazui CBD, Shanghai. Sustainable Cities and Society, 39, 181-188. https://doi.org/10.1016/j.scs.2018.02.025

Yin, P., Ji, Y., Xie, J., Liu, J., Hou, Q., Zhao, S., & Jing, P. (2022). Residential wintry thermal comfort and adaptive behaviors in a cold climate in Beijing, China. Energy & Buildings, 265, 111942. https://doi.org/10.1016/j.enbuild.2022.111942

Zhang, Z., Zhang, Y., & Ding, E. (2017). Acceptable temperature steps for transitional spaces in the hot-humid area of China. Building and Environment, 121, 190-199. https://doi.org/10.1016/j.buildenv.2017.05.026

Zhang, Z., Zhang, Y., & Jin, L. (2018). Thermal comfort in interior and semi-open spaces of rural folk houses in hot-humid areas. Building and Environment, 128, 336-347. https://doi.org/10.1016/j.buildenv.2017.10.028

Zhang, Z., Zhang, Y., & Khan, A. (2020). Thermal comfort of people in a super high-rise building with central air-conditioning system in the hot-humid area of China. Energy and Buildings, 209, 109727. https://doi.org/10.1016/j.enbuild.2019.109727

Citado por

Sistema OJS 3 - Metabiblioteca |