This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Revista de Arquitectura is an open access journal. More information...
Authors retain copyright and grant to the Revista de Arquitectura the right of first publication, which will be simultaneously subject to the Creative Commons (CC) BY-NC license.
Authors will sign a non-exclusive distribution license for the published version of the article by completing (RevArq FP03 Permission to Reproduce).
Self-archiving will comply with SHERPA/RoMEO guidelines and the Green classification.
To see in detail these guidelines, please consult...
Abstract
The thermal performance of traditional green façades (TGF) planted with perennial climbing species during the summer season in the Metropolitan Area of Mendoza, Argentina, located in an arid climate, is evaluated. For this purpose, outdoor temperatures were monitored over a
30-day period in the immediate microclimate and inside an air chamber, as well as surface temperatures outdoors and indoors, in an experimental trial. This trial comprised three masonry walls, two with TGF and one control without vegetation cover, oriented westward and isolated on their north, south and east sides; the east-facing side houses an air enclosure. Temperature reductions were found to be 3.5 °C from the ambient air at 30 cm from the wall, 6.2 °C in the indoor air chamber, 17.8 °C on the outdoor surface, 7.5 °C on the indoor surface and up to 2.0 °C variation between the TGFs with different plant species. These values demonstrate the potential of the strategy in reducing temperatures in its immediate surroundings and indoor spaces. Moreover, it is observed that the extent of these impacts depend on the type of plant structure and
are greater in arid climates compared to those reported for other climates in international literature.
Keywords:
References
Bustami, R. A., Belusko, M., Ward, J., & Beecham, S. (2018). Vertical greenery systems : A systematic review of research trends. Building and Environment, 146(August), 226-237. https://doi.org/10.1016/j.buildenv.2018.09.045
Cameron, R. W. F., Taylor, J. E., & Emmett, M. R. (2014). What’s “cool” in the world of green façades? How plant choice influences the cooweing properties of green walls. Building and Environment, 73, 198-207. https://doi.org/10.1016/j.buildenv.2013.12.005
Coma, J., Pérez, G., de Gracia, A., Burés, S., Urrestarazu, M., & Cabeza, L. F. (2017). Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Building and Environment, 111, 228-237. https://doi.org/10.1016/j.buildenv.2016.11.014
Dahanayake, K. C., Chow, C. L., & Long Hou, G. (2017). Selection of suitable plant species for energy efficient Vertical Greenery Systems (VGS). Energy Procedia, 142, 2473–2478. https://doi.org/10.1016/j.egypro.2017.12.185
De Lima Junior, J. E., De Medeiros, M. H. F., & Tavares, S. F. (2017). Fachadas vegetais para melhora do conforto ambiental de edificações: Escolha para Curitiba usando análise hierárquica. Arquiteturarevista, 13(1), 50-60. https://doi.org/10.4013/arq.2017.131.06
Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115-133. https://doi.org/10.2148/benv.33.1.115
Haggag, M., Hassan, A., & Elmasry, S. (2014). Experimental study on reduced heat gain through green façades in a high heat load climate. Energy and Buildings, 82, 668-674. https://doi.org/10.1016/j.enbuild.2014.07.087
Hoelscher, M. T., Nehls, T., Jänicke, B., & Wessolek, G. (2016). Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy and Buildings, 114, 283-290. https://doi.org/10.1016/j.enbuild.2015.06.047
Kontoleon, K. J., & Eumorfopoulou, E. A. (2010). The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Building and Environment, 45(5), 1287-1303. https://doi.org/10.1016/j.buildenv.2009.11.013
Li, C., Wei, J., & Li, C. (2019). Influence of foliage thickness on thermal performance of green façades in hot and humid climate. Energy & Buildings, 199, 72-87. https://doi.org/10.1016/j.enbuild.2019.06.045
International Energy Agency (IEA). (2017). Energy Technology Perspectives 2017. IEA Publications. https://www.iea.org/reports/energy-technology-perspectives-2017
Organización Latinoamericana de Energía (OLADE). (2022). Panorama energético de América Latina y el Caribe 2022. http://www.joi.isoss.net/PDFs/Vol-7-no-2-2021/03_J_ISOSS_7_2.pdf
Osuna-Motta, I., Herrera-Cáceres, C., y López-Bernal, O. (2017). Techo plantado como dispositivo de climatización pasiva en el trópico. Revista de Arquitectura (Bogotá), 19(1), 42–55. https://doi.org/10.14718/RevArq.2017.19.1.1109
Othman, A. R., & Sahidin, N. (2016). Vertical greening façade as passive approach in sustainable design. Procedia - Social and Behavioral Sciences, 222, 845-854. https://doi.org/10.1016/j.sbspro.2016.05.185
Pérez, G., Coma, J., Chàfer, M., & Cabeza, L. F. (2022). Seasonal influence of leaf area index (LAI) on the energy performance of a green facade. Building and Environment, 207(2021). https://doi.org/10.1016/j.buildenv.2021.108497
Pérez, G., Coma, J., Sol, S., & Cabeza, L. F. (2017). Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Applied Energy, 187, 424-437. https://doi.org/10.1016/j.apenergy.2016.11.055
Pérez Gallardo, Nuria, Rogério, Adriano, Neves, Gustavo Zen Figueiredo, Vecchia, Francisco Arthur, & Roriz, Victor Figueiredo. (2018). Reacción frente al frío de edificaciones con envolventes vegetales para climas tropicales. Fachadas verdes y cubiertas ajardinadas. Revista ingeniería de construcción, 33(1), 15-28. https://dx.doi.org/10.4067/S0718-50732018000100015
Suárez, P., Cantón, M. A., & Correa, É. (2018). Impacto de sistemas de enverdecimiento vertical en el comportamiento termo-energético de espacios urbano edilicios. Análisis crítico del estado del arte. Avances en Energías Renovables y Medio Ambiente - AVERMA, 22, 37-48. https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/1186
Suklje, T., Saso, M., & Arkar, C. (2016). On detailed thermal response modeling of vertical greenery systems as cooling measure for buildings and cities in summer conditions. Energy, 115, 1055-1068. https://doi.org/10.1016/j.energy.2016.08.095
Susorova, I., Angulo, M., Bahrami, P., & Brent Stephens. (2013). A model of vegetated exterior facades for evaluation of wall thermal performance. Building and Environment, 67, 1-13. https://doi.org/10.1016/j.buildenv.2013.04.027
Susorova, I., Azimi, P., & Stephens, B. (2014). The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations. Building and Environment, 76, 113-124. https://doi.org/10.1016/j.buildenv.2014.03.011
Vox, G., Blanco, I., & Schettini, E. (2018). Green façades to control wall surface temperature in buildings. Building and Environment, 129(2017), 154-166. https://doi.org/10.1016/j.buildenv.2017.12.002
Wong, N. H., Kwang Tan, A. Y., Chen, Y., Sekar, K., Tan, P. Y., Chan, D., Chiang, K., & Wong, N. C. (2010). Thermal evaluation of vertical greenery systems for building walls. Building and Environment, 45(3), 663-672. https://doi.org/10.1016/j.buildenv.2009.08.005
Xing, Q., Hao, X., Lin, Y., Tan, H., & Yang, K. (2019). Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter. Energy and Buildings, 183, 105-117. https://doi.org/10.1016/j.enbuild.2018.10.038
Zhang, L., Deng, Z., Liang, L., Zhang, Y., Meng, Q., & Wang, J. (2019). Energy & Buildings Thermal behavior of a vertical green facade and its impact on the indoor and outdoor thermal environment. Energy and Buildings, 204, 109502. https://doi.org/10.1016/j.enbuild.2019.109502