Imagenes asociadas al artículo
How to Cite
Arango-Díaz, L., Piderit, M. B., & Ortiz-Cabezas, A. . (2022). Study of discrepancies in sky types for dynamic daylight analysis according to available climate files. Colombia case. Revista De Arquitectura, 24(1), 84–97. https://doi.org/10.14718/RevArq.2022.24.1.4050
License
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Revista de Arquitectura is an open access journal. More information...

Authors retain copyright and grant to the Revista de Arquitectura the right of first publication, which will be simultaneously subject to the Creative Commons (CC) BY-NC license.

Authors will sign a non-exclusive distribution license for the published version of the article by completing (RevArq FP03 Permission to Reproduce).

Self-archiving will comply with SHERPA/RoMEO guidelines and the Green classification.

To see in detail these guidelines, please consult...

Abstract

To perform an accurate lighting study, it is essential to know the predominant sky types in a locality, as these are key to estimating the lighting performance of indoor environments. The objective of this research is to analyze the discrepancies in the assessment of the natural light performance of indoor spaces according to the climatic files used and consider the differences in the predominant sky types according to their radiation data. For this purpose, using the Clearness Index, from the All Pérez All-Weather Sky Model, the sky types were estimated and compared from the radiation information of climate files available for thirteen Colombian cities. Additionally, dynamic daylight simulations were performed on hypothetical environments with different climate files. The results of the research show, for each city analyzed, notable differences in the predominant sky types according to the climate file used. These differences resulted in significant discrepancies - in many cases of more than 10% - in the application of dynamic metrics using the climate files available for each city. Although it is not the objective of the research to conclude which of the climate files is more reliable, it does highlight the need for reliable radiation data in the climate files, to favor accuracy in the assessment of the lighting performance of indoor environments through computational simulation.

Keywords:

References

De Almeida, M. A. M., & Nogueira De Vasconcellos, V. M. (2019). Desenvolvimento do ano meteorológico típico para a estação meteorológica do inmet de copacabana na cidade do rio de janeiro. En XV ENCAC - XI ELACAC, Joao Pessoa, 538–546.

Alrubaih, M. S., Zain, M., Alghoul, M. A., Ibrahim, N. L., Shameri, M. A., Omkalthum, E. (2013). Research and development on aspects of daylighting fundamentals. Renewable and Sustainable Energy Reviews 21.

Arango-Díaz, L. (2021). Nueva métrica dinámica de luz natural: Relación entre la percepción de suficiencia lumínica y la disponibilidad lumínica exterior. Universidad del Bío-Bío.

Bellia, L., Pedace, A., & Fragliasso, F. (2015a). Dynamic daylight simulations: Impact of weather file’s choice. Solar Energy 117, 224-235. http://dx.doi.org/10.1016/j.solener.2015.05.002

Bellia, L., Pedace,A., & Fragliasso, F. (2015b). The role of weather data files in climate-based daylight modeling. Solar Energy 112, 163-168. http://dx.doi.org/10.1016/j.solener.2014.11.033

Comission Internationale de L´Eclairage (CIE). (2003). CIE DS 011.2/E:2002 Spatial distribution of daylight-CIE standard general sky. VIENNA. https://cie.co.at/publications/spatialdistribution-daylight-cie-standard-general-sky

Crawleu, D., & Lawrie, L. (2019). Climate.One-Building.Org. http://climate.onebuilding.org/WMO_Region_3_South_America/COL_Colombia/index.html

Gago, E. J., Muneer, T.,Knez, M., & Köster, H. (2015). Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renewable and Sustainable Energy Reviews 41, 1-13. http://dx.doi.org/10.1016/j.rser.2014.08.002

González Cáceres, A., & Díaz Cisternas, M. (2013). Función e impacto del archivo climático sobre las simulaciones de demanda energética. Hábitat Sustentable 3(2), 75-85.

Al Horr, Y., Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A. Elsarrag, E. (2016a). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment 5(1), 1-11. http://dx.doi.org/10.1016/j.ijsbe.2016.03.006

Al Horr, Y., Arif, M., Kaushik, A., Mazroei, A., Elsarrag, E., Mishra, S. (2016b). Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment 105, 369-389. http://dx.doi.org/10.1016/j.buildenv.2016.06.001

Al Horr, Y. (2017). Occupant productivity and indoor environment quality: A case of GSAS. International Journal of Sustainable Built Environment 6(2), 476-490. https://doi.org/10.1016/j.ijsbe.2017.11.001

Hudson, R., Sharma, S., Shepherd, P. &Velasco, R. (2019). Clima-Colombia. http://lacunae.io/Clima-Colombia/climaColombiaOrg/datos.html

IDEAM. (2019). Datos climáticos para Colombia. http://dhime.ideam.gov.co/atencionciudadano/

IESNA-The Daylight Metric Committee. (2012). IES LM_83_12. Aproved method: IES Spatial Daylight Authonomy (sDA) and Annual Sunlight Exposure (ASE). Illuminati.

Igawa, N., & Nakamura, I. (2001). All sky model as a standard sky for the simulation of daylit environment. Building and Environment 36(6), 763-770.

Igawa, N., Nakamura, H., & Matsuura, K. (1997). Sky luminance distribution model for simulation of daylit environment. En IBPSA International Building Performance Simulation Conf. Prague, 1-7.

Inanici, M., & Hashemloo, A. (2017). An investigation of the daylighting simulation techniques and sky modeling practices for occupant centric evaluations. Building and Environment 113, 220-231. http://linkinghub.elsevier.com/retrieve/pii/S0360132316303626

Iversen, A., Svendsen, D., & Nielsen, T. R. (2013). The effect of different weather data sets and their resolution on climate-based daylight modelling. Lighting Research and Technology 45(3), 305-116.

Kittler, R., Pérez, R., & Darula, S. (1997). A new generation of sky standards. Prc. Conf. Lux Europa, 359-373.

Kittler, R., Pérez, R., & Darula, S. (1998). A set of standard skies characterizing daylight conditions for computer and energy conscious design. Issue Technical Report-April 2016. https://doi.org/10.13140/RG.2.1.4798.7048

Kleindienst, S., Bodart, M., & Andersen, M. (2008). Graphical representation of climate-based daylight performance to support architectural design. Leukos 5(1), 1-28. https://www.tandfonline.com/doi/abs/10.1080/15502724.2008.10747628

Li, D. H. W., & Lou, S. (2018). Review of solar irradiance and daylight illuminance modeling and sky classification. Renewable Energy 126, 445-453.

Mardaljevic, J., Andersen, M., Roy, N., & Christoffersen, J. (2012). Daylighting Metrics: Is There a Relation Between Useful Daylight Illuminance and Daylight Glare Probability? Ibpsa-England Bso12, 189-196.

Nabil, A., & Mardaljevic, J. (2005). Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Lighting Research and Technology 37(1), 41-59.

Nabil, A., & Mardaljevic, J. (2006). Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings 38(7), 905-913.

NOAA. (2019). Integrated Surface Dataset (Global). Integrated Surface Dataset (Global). https://www.ncdc.noaa.gov/isd

Pellegrino, A., Cammarano, S., Lo Verso, C. R. M., & Corrado, V. (2017). Impact of daylighting on total energy use in of fi ces of varying architectural features in Italy : Results from a parametric study. Building and Environment 113, 151-162. http://dx.doi.org/10.1016/j.buildenv.2016.09.012

Pérez, R., Ineichen, P., & Seals, R. (1990). Modeling Daylight Availability and irradiance components from direct and global irradiance. Solar Energy 44, 271-289.

Pérez, R., Seals, R., & Michalsky, J. (1993). All_Weather model for sky luminance distribution. Preliminary configuration and validation. Solar Energy 50(3), 235-245.

Piderit, M.B., Cauwerts, C., & Díaz, M. (2014). Definition of the CIE standard skies and application of high dynamic range imaging technique to characterize the spatial distribution of daylight in Chile. Revista de la Construcción 13(2), 22-30.

Reinhart, C.F., Mardaljevic, J., & Rogers, Z. (2006). Dynamic daylight performance metrics for sustainable building design. LEUKOS - Journal of Illuminating Engineering Society of North America 3(1).

Reinhart, C. F., & Walkenhorst, O. (2001). Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings 33(7), 683-697.

Reinhart, C. F., & Wienold, J. (2011). The daylighting dashboard - A simulation-based design analysis for daylit spaces. Building and Environment 46, 386-396.

Salazar, J. H. (1995). Sunlight evaluation in buildings. Building Research & Information 23(3), 182-187.

U.S. Department of Energy’s, y Building Technologies Office. (2019). Energy plus weather data. https://energyplus.net/weather.

Yu, X., & Su, Y. (2015). Daylight availability assessment and its potential energy saving estimation.-A literature review. Renewable and Sustainable Energy Reviews 52, 494-503.

Wang, J., Wei, M., & Chen, L. (2019). Does typical weather data allow accurate predictions of daylight quality and daylight-responsive control system performance. Energy and Buildings, 184, 72-87. https://doi.org/10.1016/j.enbuild.2018.11.029

Reference by

Sistema OJS 3 - Metabiblioteca |