How to Cite
Wieser, M., Onnis, S., & Meli, G. (2020). Thermal performance of light earth building envelope : possibilities of application in the peruvian territory. Revista De Arquitectura (Bogotá), 22(1), 164–174. https://doi.org/10.14718/RevArq.2020.2633
License

Revista de Arquitectura is an open access journal. More information...

Authors retain copyright and grant to the Revista de Arquitectura the right of first publication, which will be simultaneously subject to the Creative Commons (CC) BY-NC license.

Authors will sign a non-exclusive distribution license for the published version of the article by completing (RevArq FP03 Permission to Reproduce).

Self-archiving will comply with SHERPA/RoMEO guidelines and the Green classification.

To see in detail these guidelines, please consult...

Abstract

Traditional and contemporary construction systems have shown serious limitations in the solution of the qualitative and quantitative deficit of housing and equipment. Evidence of thermal performance is equally discouraging. That is why this study enquiries about the ability of cob to provide thermal comfort in buildings, considering the different climates of the Peruvian territory and comparing it with the most common construction systems in the environment: adobe and brick masonry. As of the previous characterization of the components’ thermal qualities, the carrying out of dynamic thermal simulations and comparing the performance of different digital prototypes, the virtues of cob to provide thermal comfort in buildings were identified. The good performance of the material is attributed to the marked balance between a medium thermal mass and a relatively low thermal conductivity. It is the only one that meets the requirements of the current Peruvian energy efficiency standard in the case of colder climates. Additionally, the ecological advantages associated to the use of natural, renewable and biodegradable materials in the composition of the proposed construction system are highlighted.

Keywords:

References

Bouillon, C. P. (Ed.), Blanco, A., Fretes, V., Boruchowicz, C., Herrera, K., Medellín, N., Muñoz, A. y Azevedo, V. (2012). Un espacio para el desarrollo: Los mercados de vivienda en América Latina y el Caribe. Washington, D.C.: Banco Interamericano de Desarrollo. Recuperado de: https://publications.iadb.org/publications/spanish/document/Un-espacio-para-el-desarrollo-Los-mercados-de-vivienda-en-Am%C3%A9rica-Latina-y-el-Caribe.pdf

Busbridge, R., & Rhydwen, R. (2010). An investigation of the thermal properties of hemp and clay monolithic walls. Proceedings of Advances in Computing and Technology, (AC&T) The School of Computing and Technology 5th Annual Conference, University of East London, pp. 163-170. Recuperado de: https://repository.uel.ac.uk/item/862v9

CIBSE, G. A. (2015). Guide A: Environmental design. London: Chartered Institution of Building Services Engineers CIBSE.

Climate.OneBuilding.Org (2019). Repository of free climate data for building performance simulation. Recuperado de: http://climate.onebuilding.org/

De Dear, R., y Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. JournalASHRAE Transactions. 104(1),.145-167. Recuperado de: https://escholarship.org/uc/item/4qq2p9c6

Givoni, B. (1998). Climate considerations in building and urban design. New York: John Wiley & Sons.

Instituto Geofísico del Perú (2018). El Clima en el Perú. Ministerio del Ambiente. Recuperado de: http://www.met.igp.gob.pe/clima/

Marsh, A. (2019). Psychrometric Chart. Software en línea. Recuperado de: http://andrewmarsh.com/software/psychro-chart-web/

Reglamento Nacional de Edificaciones (2014). Norma EM.110 Confort térmico y lumínico con eficiencia energética. Ministerio de Vivienda, Construcción y Saneamiento del Perú. Recuperado de: http://cdn-web.construccion.org/normas/rne2012/rne2006/files/titulo3/04_EM/DS006-2014_EM.110.pdf

Szokolay, S. (2012). Introduction to architectural science. Great Britain: Routledge. Recuperado de: https://archive.org/details/Introduction_to_Architectural_Science_The_Basis_of_Sustainable_Design

U.S. Department of Energy (2019). EnergyPlus Weather Data. Recuperado de: https://energyplus.net/weather

Vinceslas, T., Colinart, T., Hamard, E., de Ménibus, A. H., Lecompte, T., & Lenormand, H. (2019). Light Earth Performances for Thermal Insulation: Application to Earth–Hemp. In En Earthen Dwellings and Structures (pp. 357-367). Singapore: Springer.

Volhard, F. (2016). Light earth building. A handbook for building with wood and earth. Basilea, Suiza: Birkhäuser.

Wieser, M. (2011). Consideraciones bioclimáticas en el diseño arquitectónico: el caso peruano. Lima: Centro de Investigación de la Arquitectura y la Ciudad. PUCP. Recuperado de: http://repositorio.pucp.edu.pe/index/handle/123456789/28699

Wieser, M., Onnis, S. y Meli, G. (2018). Conductividad térmica de la tierra alivianada con fibras naturales en paneles de quincha. SIACOT 2018 Tierra, Cultura, hábitat resiliente y desarrollo sostenible, 18° Seminario iberoamericano de arquitectura y construcción en tierra. Ciudad de La Antigua, Guatemala: Pro Terra. Recuperado de: http://files.pucp.edu.pe/facultad/arquitectura/2019/11/27173426/2018-SIACOT-Wieser-Onnis-Meli.pdf

Reference by

Sistema OJS 3 - Metabiblioteca |