Revista de Arquitectura is an open access journal. More information...
Authors retain copyright and grant to the Revista de Arquitectura the right of first publication, which will be simultaneously subject to the Creative Commons (CC) BY-NC license.
Authors will sign a non-exclusive distribution license for the published version of the article by completing (RevArq FP03 Permission to Reproduce).
Self-archiving will comply with SHERPA/RoMEO guidelines and the Green classification.
To see in detail these guidelines, please consult...
Abstract
The global energy problem has prompted the necessary inclusion of energy efficiency measures in buildings and communities. However, this is not enough if the goal is to definitely eliminate fossil fuels, as well as to minimize the impact of energy exploitation on the environment. Therefore, it is fundamental to include alternatives for energy auto-sufficiency in the buildings themselves. Solar irradiation is a huge resource, especially in mid-latitude and clearly equatorial areas. This research reviews historical antecedents for active solar energy integration from the perspective of architecture, through a compilation of historical data, technologies available in accordance with the demand, and technological aspects to be considered in buildings. It also presents recent findings regarding architectural integration as a functional and morphological aspect. Based on this analysis, different levels for the architectural integration of solar panels are proposed. It depends on the analysed conditions and possibilities that solar collectors are efficient in production and are in harmony with architecture.
References
Agrawal, B. y Tiwari, G. N. (2010). Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions. Appl. Energy, 87, 417-426. doi:10.1016/j.apenergy.2009.06.011
Alamy (2015). Impact 2000 House. Recuperado de http://www.alamy.com/stock-photo-pv
-house-the-boston-edison-impact-2000-home-incorporated-a-4-kwp-utility-84599920.html
Astea, N., Del Peroa, C. y Leonfortea, F. (2012). Optimization of solar thermal fraction in PVT systems. Energy Procedia, 30, 8-18. doi:10.1016/j.egypro.2012.11.003
Athienitis, A. K. (2007). Design of a solar home with bipv-thermal system and ground source heat pump. Canadian Solar Buildings Conference, Calgary.
Athienitis, A. K., Bambara, J., ONeill, B. y Faille, J. (2011). A prototype photovoltaic/thermal system integrated with transpired collector. Sol. Energy 117, 403-410. doi:10.1016/j.solener.2010.10.008
Besser, D., Rodrigues, L. y Bobadilla, A. (2012). New Chilean Building Regulations and Energy Efficient Housing in Disaster Zones The thermal performance of prefabricated timber-frame dwellings. PLEA 2012 - 28th Conf. Oppor. Limits Needs Towar. an Environ. responsible Archit.
Bolinger, M. y Wiser, R. (2002). Case studies of state support for renewable energy. Estados Unidos: Berkeley Lab and the Clean Energy Group CASE.
CDT (2007). Sistemas Solares Térmicos. Santiago de Chile: Corporación de Desarrollo Tecnológico.
Chow, T. T. (2010). A review on photovoltaic / thermal hybrid solar technology. Appl. Energy, 87, 365-379. doi:10.1016/j.apenergy.2009.
037
Cinnamon, B. (2016). When Can I Get Solar Shingles? San Diego: Cinnamonsolar.
De Little, A. (1995). Building- Integrated Photovoltaics and US Market. Massachusets: U.S. Department of Energy.
Disch, R. (2010). PlusEnergy - The Manifesto. Recuperado de http://www.rolfdisch.de/files/pdf/12_PLUSENERGIE_EIN_MANIFEST_6_englisch.pdf.
Disch, R. (1994). Rotatable Solar House HELIO-TROP ®. Freiburg: Rolf Disch SolarArchitektur .
EREC (2010). RE-thinking 2050: a 100% renewable energy vision for the European Union. Bruselas: EREC.
Fraunhofer, Institute for Solar Energy (2016). Photovoltaics report. Freiburg: Fraunhofer Institute for Solar Energy Systems, ISE
Gajbert, H. (2008). Solar thermal energy systems for building integration. Lund: Lund University.
Gook-hwan, H. y Eximbank, K. (2013). Smart Grid Studies in Ecuador. Sejong: Knoeledge Sharing Program Korea
Guillén, V., Quesada, F., López, M., Orellana, D., Serrano, A., Mena, V.G. et al. (2014). Eficiencia energética en edificaciones residenciales. ESTOA, 63-73.
Gupta, A., Cemesova, A., Hopfe, C. J., Rezgui, Y. y Sweet, T., (2014). A conceptual framework to support solar PV simulation using an open-BIM data exchange standard. Autom. Constr. 37, 166-181. doi:10.1016/j.autcon.2013.10.005
Haberl, J. S. y Cho, S. (2014). Energy Systems. Work. Gr. III - Mitig. Clim. Chang., 139.
Hachem, C. (2012). Investigation of Design Parameters for Increased Solar Potential of Dwellings and Neighborhoods. Montreal: Concordia University.
Hachem, C., Athienitis, A. y Fazio, P. (2011). Investigation of solar potential of housing units in different neighborhood designs. Energy Build, 43, 2262-2273. doi:10.1016/j.enbuild.2011.05.008
IEA (2009). Cities, Towns & Renewable Energy Cities, Towns. Paris: IEA/OECD.
IEA y SHC (2015). New Generation Solar Cooling & Heating Systems. Recuperado de URL http://task53.iea-shc.org.
IEA y SHC (1977). IEA Solar Heating & Cooling Programme. Recuperado de http://www.iea-shc.org/tasks-completed.
IEA y SHC (2014). Innovative solar products for building integration Recuperado de http://www.solarintegrationsolutions.org
IEA y SHC Task 26 (2000). CombiSystem Overview 2000. Recuperado de http://www.aee-intec.at/0uploads/dateien551.pdf
IEA y SHC Task 41 (2012a). Solar energy systems in architecture, integration criteria and guidelines. Recuperado de http://task41.iea-shc.org/data/sites/1/publications/T41DA2-Solar-Energy-Systems-in-Architecture-28March2013.pdf
IEA y SHC Task 41 (2012b). Solar design of buildings for architects: Review of solar design tools. Recuperado de http://task41.iea-shc.org/data/sites/1/publications/T41DA2-Solar-Energy-Systems-in-Architecture-28March2013.pdf
IEA Solar Heating y Cooling Program (2007). Compilation and analyze of interviews DA 1-2 Preliminary Outcome of PV / T market survey interviews. Hãrnõsand: IEA Solar Heating and cooling Program.
IEA Solar Heating y Cooling Program Task 16 (1995). Photovoltaic in Buildings. Recuperado de http://archive.iea-shc.org/task16/index.html
Kaan, H. y Reijenga, T. (2004). Photovoltaics in an architectural context. Prog. Photovoltaics Res. Appl., 12, 395-408. doi:10.1002/pip.554
Kalogirou, S. A. (2004). Solar thermal collectors and applications. Prog. Energy Combust. Sci., 30, 231-295. doi:10.1016/j.pecs.2004.02.001
Lamnatou, C., Mondol, J. D., Chemisas-bipv-onyxsolar.html
Perlin, J. (2013). Let It Shine: The 6000 Year Story of Solar Energy. Recuperado de http://john-perlin.com/let-it-shine.html
Rickerson, W. e IEA (2014). Residential prosumers - drivers and policy options. Re-prosumers, 1-123.
Shade Optisol y SUPSI Competence Center (2011). Detail sheet Solar shadings. Cannobio: Swiss BiPV Competence Centre.
Solar Design Associates (2015). Carlisle House. Recuperado de http://www.solardesign.com/SDA_Today/carlisle-house/
Solarwall (2015). PV/Thermal; Hybrid Solar Heating + Electricity. Recuperado de http://solarwall.com/en/products/pvthermal.php
Solimpeks (2010). Volther Hybrid PV-T Panels. Konya: Solimpeks Solar Energy Corporation.
SUPSI Competence Center (2008). Paolo VI Audience Chamber. Canobbio: Swiss BiPV Competence Centre.
Suter, J.-M., Letz, T. y Weiss, W. (2003). Solar Combisystems - Overview. Gleisdorf: AEE INTEC.
Swiss Megasol y SUPSI Competence Center (2011). Façade elements Megasol Swiss Premium Mono. Canobbio: Swiss BiPV Competence Centre.
Terra Ecología Práctica (2007). Guía práctica de una instalación de energía solar térmica. Recuperado de http://www.terra.org/categorias/articulos/guia-practica-de-una-instalacion-de-energia-solar-termica
Tesla Inc. (2017). PowerWall Tesla Home Battery. Recuperado de http://www.teslamotors.com/powerwall
Vázquez Espí, M. (1999). Una brevísima historia de la arquitectura solar. Por una Arquitectura y un Urbanismo Contemporáneos, 1-31.
Wall, M., Munari Probst, M. C., Roecker, C., Dubois, M. C., Horvat, M., Jørgensen, O. B. y Kappel, K. (2012). Achieving solar energy in architecture - IEA SHC Task 41. Energy Procedia, 30, 1250-1260. doi:10.1016/j.egypro.2012.11.138
Wegertseder, P., Lund, P., Mikkola, J. y García Alvarado, R. (2016). Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Sol. Energy, 135, 325-336. doi:10.1016/j.solener.2016.05.061
Zalamea León, E. y García Alvarado, R. (2014). Integrated architectural design of active solar thermal collector at dwelling´s roofs. Arquitectura y Urbanismo, XXXV, 1815-5898.
Zhu, H., Wei, J., Wang, K., Wu, D., Al-Hasan, A. Y., Altermatt, P. P. et al. (2011). The history of solar. Sol. Energy Mater. Sol. Cells, 93, 1461-1470. doi:10.1016/j.solmat.2009.04.006