27-2
How to Cite
Praia, P., da Costa-Pantoja, J., Roma-Buzar, M., & Sarasty-Narváez, N. (2025). The impact of BIM on project coordination: an investigation into interference detection. Revista De Arquitectura (Bogotá), 27(2), 191–204. https://doi.org/10.14718/RevArq.2025.27.5624
License
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Revista de Arquitectura is an open access journal. More information...

Authors retain copyright and grant to the Revista de Arquitectura the right of first publication, which will be simultaneously subject to the Creative Commons (CC) BY-NC license.

Authors will sign a non-exclusive distribution license for the published version of the article by completing (RevArq FP03 Permission to Reproduce).

Self-archiving will comply with SHERPA/RoMEO guidelines and the Green classification.

To see in detail these guidelines, please consult...

Abstract

This article presents an analysis and comparison between the traditional coordination process used by architectural project offices and the automated coordination method available through Building Information Modeling (BIM), with a focus on structural projects. The main objective of this study is to evaluate the benefits that systematization and automation of coordination bring to companies in the architecture, engineering, and construction sector that adopt BIM technology. To this end, the study maps the current coordination procedure in an architectural office and compares it with the automated process applied in two real case studies developed by the same firm. The case study reveals that the coordination process improves significantly when automated clash detection tools are used, surpassing the effectiveness of the hybrid method currently in place. Moreover, the results emphasize that while the exclusive adoption of BIM by the architectural office yields significant benefits during the design, modeling, and documentation stages, effective coordination and optimal conflict detection require the entire project to be developed using BIM-compatible tools. This finding highlights the importance of comprehensive BIM implementation across all project phases to maximize efficiency and avoid potential discrepancies during execution.

References

Akbari, S., Sheikhkhoshkar, M., Rahimian, F. P., El Haouzi, H. B., Najafi, M., y Talebi, S. (2024). Sustainability and building information modelling: Integration, research gaps, and future directions. Automation in Construction, 163, 105420. https://doi.org/10.1016/j.autcon.2024.105420

Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C., y O’Reilly, K. (2011). Technology adoption in the BIM implementation for lean architectural practice. Automation in Construction, 20(2), 189-195. http://doi:10.1016/j.autcon.2010.09.016

Arumsari, P., y Al’farisi, M. K. (2017). Cost estimation using ministerial regulation of public work no. 11/2013 in construction projects. Earth and Environmental Science, 109(1), 012033. https://iopscience.iop.org/article/10.1088/1755-1315/109/1/012033

Autodesk. (2024). [fotografía]. https://www.autodesk.com.br/products/navisworks

Bardales, N. H. M., Rojas, L. C., y Marín, R. (2021). Implementación de la metodología BIM en el Perú: Una revisión. Revista Científica Pakamuros, 9(2). https://doi.org/10.37787/0b391g12

Brasil. (2018, 17 de mayo). Decreto 9.377. Diário Oficial da União. http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/decreto/D9377.htm

Cao, D., Wang, G., Li, H., Skitmore, M., Huang, T., y Zhang, W. (2015). Practices and effectiveness of building information modelling in construction projects in China. Automation in Construction, 49, 113-122. http://doi.org/10.1016/j.autcon.2014.10.014

Cardoso Llach, D., y Burbano, A. (2020). Other computations: Digital technologies for architecture from the global south. Dearq, 27, 6-21. https://doi.org/10.18389/dearq27.2020.01

de Paula, H. M., Rodrigues, K. C., de Castro Mesquita, H., y Eduardo, R. C. (2017). Mapeamento sistemático de referências do uso do BIM na compatibilização de projetos na construção civil. REEC-Revista Eletrônica de Engenharia Civil, 13(1). https://doi.org/10.5216/reec.v13i1.45014

Dias, E. R., y Arantes, E. M. (2015). Interoperabilidade de ferramentas de modelagem paramétrica em projetos industriais. Gestão & Tecnologia de Projetos, 10(2), 35-46. https://www.revistas.usp.br/gestaodeprojetos/article/view/101369

Eastman, C., Teicholz, P., Sacks, R., y Liston, K. (2014). Manual de BIM: um guia de modelagem da informação da construção para arquitetos, engenheiros, gerentes, construtores e incorporadores. Bookman Editora.

Eastman, C. M. (2011). BIM handbook: A guide to building information modeling for owners,managers, designers, engineers and contractors. John Wiley & Sons.

Ferreira, R. C., y Santos, E. T. (2007). Características da representação 2D e suas limitações para a compatibilização espacial. Gestão & Tecnologia de Projetos, 2(2), 36-51. https://doi.org/10.4237/gtp.v2i2.39

Fittipaldi Arquitetura. (2023). Proyecto residencial- plantas y cortes arquitectónicos [Documento no publicado].

Goes, R. T. B. (2011). Compatibilização de projetos com a utilização de utilização de ferramentas BIM. Instituto de Pesquisa Tecnológicas do Estado de São Paulo.

Gourlis, G., y Kovacic, I. (2017). Building Information Modelling for analysis of energy efficient industrial buildings–A case study. Renewable and Sustainable Energy Reviews, 68, 953-963. https://doi.org/10.1016/j.rser.2016.02.009

Howell, I., y Batcheler, B. (2005). Building information modeling two years later–huge potential, some success and several limitations. The Laiserin Letter, 22(4), 3521-3528. http://www.laiserin.com/features/bim/newforma_bim.pdf

Hong, Y., Hammad, A. W., Sepasgozar, S., y Akbarnezhad, A. (2018). BIM adoption model for small and medium construction organisations in Australia. Engineering, Construction and Architectural Management, 26(2), 154-183. https://doi.org/10.1108/ECAM-04-2017-0064

Oh, M., Lee, J., Hong, S. W., y Jeong, Y. (2015). Integrated system for BIM-based collaborative design. Automation in Construction, 58, 196-206. https://doi.org/10.1016/j.autcon.2015.07.015

Pereira, M. D. dos S. (2016). Implementação do BIM nas organizações: Práticas e sugestões para a implementação [Dissertação de mestrado, Universidade do Minho]. Universidade do Minho, Escola de Engenharia. https://hdl.handle.net/1822/48366

Ramírez, M. C. (2018). Planejamento de projetos de edificações na administração pública: Estudo de caso com uso de ferramentas de modelagem da informação da construção [Dissertação de mestrado, Universidade de Brasília]. Repositório Institucional da Universidade de Brasília. http://repositorio.unb.br/handle/10482/35716

Shirowzhan, S., Sepasgozar, S. M., Edwards, D. J., Li, H., y Wang, C. (2020). BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Automation in Construction, 112, 103086. https://doi.org/10.1016/j.autcon.2020.103086

Sienge, Grant Thornton. (2020). Mapeamento de maturidade BIM Brasil. https://www.sienge.com. br/relatorio-mapeamento-de-maturidade-bim/

Succar, B., y Kassem, M. (2015). Macro-BIM adoption: Conceptual structures. Automation in Construction, 57, 64-79. https:// doi:10.1016/j.autcon.2015.04.018

Zardo, P., Mussi, A. Q., y Silva, J. L. D. (2020). Tecnologias digitais no processo de projeto contemporâneo: potencialidades e desafios à profissão e à academia. Ambiente Construído, 20, 425-440. https://doi.org/10.1590/s1678-86212020000200407

Zuluaga, C. M., y Albert, A. (2018). Preventing falls: Choosing compatible fall protection supplementary devices (FPSD) for bridge maintenance work using virtual prototyping. Safety Science, 108, 238-247. https://doi.org/10.1016/j.ssci.2017.08.006

##submission.citations.for##

Sistema OJS 3 - Metabiblioteca |